OPEN Foundation

Psychopharmacology

The acute effects of classic psychedelics on memory in humans

Abstract

Rationale: Memory plays a central role in the psychedelic experience. The spontaneous recall and immersive reliving of autobiographical memories has frequently been noted by researchers and clinicians as a salient phenomenon in the profile of subjective effects of classic psychedelic drugs such as psilocybin, LSD, and ayahuasca. The ability for psychedelics to provoke vivid memories has been considered important to their clinical efficacy.

Objective: This review aims to examine and aggregate the findings from experimental, observational, and qualitative studies on the acute modulation of memory by classic psychedelics in humans.

Method: A literature search was conducted using PubMed and PsycInfo as well as manual review of references from eligible studies. Publications reporting quantitative and/or qualitative findings were included; animal studies and case reports were excluded.

Results: Classic psychedelics produce dose-dependently increasing impairments in memory task performance, such that low doses produce no impairment and higher doses produce increasing levels of impairment. This pattern has been observed in tasks assessing spatial and verbal working memory, semantic memory, and non-autobiographical episodic memory. Such impairments may be less pronounced among experienced psychedelic users. Classic psychedelics also increase the vividness of autobiographical memories and frequently stimulate the recall and/or re-experiencing of autobiographical memories, often memories that are affectively intense (positively or negatively valenced) and that had been avoided and/or forgotten prior to the experience.

Conclusions: Classic psychedelics dose-dependently impair memory task performance but may enhance autobiographical memory. These findings are relevant to the understanding of psychological mechanisms of action of psychedelic-assisted psychotherapy.

Healy C. J. (2021). The acute effects of classic psychedelics on memory in humans. Psychopharmacology, 238(3), 639–653. https://doi.org/10.1007/s00213-020-05756-w

Link to full text

Psychedelic Medicines in Major Depression: Progress and Future Challenges

Abstract

The volume of research on the therapeutic use of psychedelic drugs has been increasing during the last decades. Partly because of the need of innovative treatments in psychiatry, several studies have assessed the safety and efficacy of drugs like psilocybin or ayahuasca for a wide range of mental disorders, including major depression. The first section of this chapter will offer an introduction to psychedelic research, including a brief historical overview and discussions about appropriate terminology. In the second section, the recently published clinical trials in which psychedelic drugs were administered to patients will be analysed in detail. Then, in the third section, the main neurobiological mechanisms of these drugs will be described, noting that while some of these mechanisms could be potentially associated with their therapeutic properties, they are commonly used as adjuvants in psychotherapeutic processes. The last section suggests future challenges for this groundbreaking field of research and therapy.

Bouso, J. C., Ona, G., Dos Santos, R. G., & Hallak, J. (2021). Psychedelic Medicines in Major Depression: Progress and Future Challenges. Advances in experimental medicine and biology, 1305, 515–533. https://doi.org/10.1007/978-981-33-6044-0_26

Link to full text

Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms

Abstract

Mounting evidence suggests safety and efficacy of psychedelic compounds as potential novel therapeutics in psychiatry. Ketamine has been approved by the Food and Drug Administration in a new class of antidepressants, and 3,4-methylenedioxymethamphetamine (MDMA) is undergoing phase III clinical trials for post-traumatic stress disorder. Psilocybin and lysergic acid diethylamide (LSD) are being investigated in several phase II and phase I clinical trials. Hence, the concept of psychedelics as therapeutics may be incorporated into modern society. Here, we discuss the main known neurobiological therapeutic mechanisms of psychedelics, which are thought to be mediated by the effects of these compounds on the serotonergic (via 5-HT2A and 5-HT1A receptors) and glutamatergic [via N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] systems. We focus on 1) neuroplasticity mediated by the modulation of mammalian target of rapamycin-, brain-derived neurotrophic factor-, and early growth response-related pathways; 2) immunomodulation via effects on the hypothalamic-pituitary-adrenal axis, nuclear factor ĸB, and cytokines such as tumor necrosis factor-α and interleukin 1, 6, and 10 production and release; and 3) modulation of serotonergic, dopaminergic, glutamatergic, GABAergic, and norepinephrinergic receptors, transporters, and turnover systems. We discuss arising concerns and ways to assess potential neurobiological changes, dependence, and immunosuppression. Although larger cohorts are required to corroborate preliminary findings, the results obtained so far are promising and represent a critical opportunity for improvement of pharmacotherapies in psychiatry, an area that has seen limited therapeutic advancement in the last 20 years. Studies are underway that are trying to decouple the psychedelic effects from the therapeutic effects of these compounds. SIGNIFICANCE STATEMENT: Psychedelic compounds are emerging as potential novel therapeutics in psychiatry. However, understanding of molecular mechanisms mediating improvement remains limited. This paper reviews the available evidence concerning the effects of psychedelic compounds on pathways that modulate neuroplasticity, immunity, and neurotransmitter systems. This work aims to be a reference for psychiatrists who may soon be faced with the possibility of prescribing psychedelic compounds as medications, helping them assess which compound(s) and regimen could be most useful for decreasing specific psychiatric symptoms.

Inserra, A., De Gregorio, D., & Gobbi, G. (2021). Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacological reviews, 73(1), 202–277. https://doi.org/10.1124/pharmrev.120.000056

Link to full text

Copper Concentrations in Ketamine Therapy for Treatment-Resistant Depression

Abstract

Changes in serum copper concentration are observed in patients with depressive symptoms. Unmet needs in contemporary antidepressant treatment have increased interest in non-monoaminergic antidepressants, such as ketamine, an anaesthetic drug that has demonstrated a rapid antidepressant effect in patients with treatment-resistant depression (TRD). The purpose of this study was to examine whether serum copper concentrations change during ketamine treatment and whether there is an association between the copper concentrations and treatment response measured using psychometric scale scores. Moreover, the interlink between somatic comorbidities and copper concentration was studied. Patients with major depressive disorder or bipolar disorder were rated weekly by a clinician using the Montgomery-Asberg Depression Rating Scale (MADRS) and Young Mania Rating Scale (YMRS). Copper level assessments were carried out weekly before the start of ketamine treatment and then after every second infusion and one week after the last ketamine infusion. The serum concentration of copper before ketamine treatment was significantly higher than that after the fifth infusion (p = 0.016), and the serum concentration after the treatment was significantly higher than that after the fifth infusion (p = 0.048). No significant correlations between changes in the copper serum concentrations and MADRS or YMRS were found. The serum copper level was not associated with somatic comorbidities during the course of treatment. This study provides data on the role of copper in short-term intravenous ketamine treatment in TRD, although no clear evidence of a connection between the copper level and treatment response was found.

Słupski, J., Cubała, W. J., Górska, N., Słupska, A., & Gałuszko-Węgielnik, M. (2020). Copper Concentrations in Ketamine Therapy for Treatment-Resistant Depression. Brain sciences, 10(12), 971. https://doi.org/10.3390/brainsci10120971

Link to full text

The Subjective Effects of Psychedelics May Not Be Necessary for Their Enduring Therapeutic Effects

Abstract

Psychedelics represent one of the most promising classes of experimental medicines for the treatment of neuropsychiatric disorders due to their ability to promote neural plasticity and produce both rapid and sustained therapeutic effects following a single administration. Conventional wisdom holds that peak mystical experiences induced by psychedelics are a critical component of their therapeutic mechanisms of action, though evidence supporting that claim is largely correlational. Here, I present data suggesting that the subjective effects induced by psychedelics may not be necessary to produce long-lasting changes in mood and behavior. Understanding the role of subjective effects in the therapeutic mechanisms of psychedelics will have important implications for both basic neuroscience and for increasing patient access to the next generation of medicines developed as a result of psychedelic research.

Olson D. E. (2020). The Subjective Effects of Psychedelics May Not Be Necessary for Their Enduring Therapeutic Effects. ACS pharmacology & translational science, 4(2), 563–567. https://doi.org/10.1021/acsptsci.0c00192

Link to full text

Involvement of NMDA receptors containing the GluN2C subunit in the psychotomimetic and antidepressant-like effects of ketamine

Abstract

Acute ketamine administration evokes rapid and sustained antidepressant effects in treatment-resistant patients. However, ketamine also produces transient perceptual disturbances similarly to those evoked by other non-competitive NMDA-R antagonists like phencyclidine (PCP). Although the brain networks involved in both ketamine actions are not fully understood, PCP and ketamine activate thalamo-cortical networks after NMDA-R blockade in GABAergic neurons of the reticular thalamic nucleus (RtN). Given the involvement of thalamo-cortical networks in processing sensory information, these networks may underlie psychotomimetic action. Since the GluN2C subunit is densely expressed in the thalamus, including the RtN, we examined the dependence of psychotomimetic and antidepressant-like actions of ketamine on the presence of GluN2C subunits, using wild-type and GluN2C knockout (GluN2CKO) mice. Likewise, since few studies have investigated ketamine’s effects in females, we used mice of both sexes. GluN2C deletion dramatically reduced stereotyped (circling) behavior induced by ketamine in male and female mice, while the antidepressant-like effect was fully preserved in both genotypes and sexes. Despite ketamine appeared to induce similar effects in both sexes, some neurobiological differences were observed between male and female mice regarding c-fos expression in thalamic nuclei and cerebellum, and glutamate surge in prefrontal cortex. In conclusion, the GluN2C subunit may discriminate between antidepressant-like and psychotomimetic actions of ketamine. Further, the abundant presence of GluN2C subunits in the cerebellum and the improved motor coordination of GluN2CKO mice after ketamine treatment suggest the involvement of cerebellar NMDA-Rs in some behavioral actions of ketamine.

Tarrés-Gatius, M., Miquel-Rio, L., Campa, L., Artigas, F., & Castañé, A. (2020). Involvement of NMDA receptors containing the GluN2C subunit in the psychotomimetic and antidepressant-like effects of ketamine. Translational psychiatry, 10(1), 427. https://doi.org/10.1038/s41398-020-01110-y

Link to full text

A non-hallucinogenic psychedelic analogue with therapeutic potential

Abstract

The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals1. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine-like those of other psychedelic compounds-are long-lasting2, which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling3,4. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog-a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.

Cameron, L. P., Tombari, R. J., Lu, J., Pell, A. J., Hurley, Z. Q., Ehinger, Y., Vargas, M. V., McCarroll, M. N., Taylor, J. C., Myers-Turnbull, D., Liu, T., Yaghoobi, B., Laskowski, L. J., Anderson, E. I., Zhang, G., Viswanathan, J., Brown, B. M., Tjia, M., Dunlap, L. E., Rabow, Z. T., … Olson, D. E. (2021). A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature, 589(7842), 474–479. https://doi.org/10.1038/s41586-020-3008-z

Link to full text

The Ketamine Antidepressant Story: New Insights

Abstract

Ketamine is a versatile agent primarily utilized as a dissociative anesthetic, which acts by blocking the excitatory receptor N-methyl-d-aspartate receptor (NMDA). It functions to inhibit the current of both Na+ and K+ voltage-gated channels, thus preventing serotonin and dopamine reuptake. Studies have indicated that administering a single subanesthetic dose of ketamine relieves depression rapidly and that the effect is sustained. For decades antidepressant agents were based on the monoamine theory. Although ketamine may not be the golden antidepressant, it has opened new avenues toward mechanisms involved in the pathology of treatment-resistant depression and achieving rapid antidepressant effects. Thus, preclinical studies focusing on deciphering the molecular mechanisms involved in the antidepressant action of ketamine will assist in the development of a new antidepressant. This review was conducted to elucidate the emerging pathways that can explain the complex dose-dependent mechanisms achieved by administering ketamine to treat major depressive disorders. Special attention was paid to reviewing the literature on hydroxynorketamines, which are ketamine metabolites that have recently attracted attention in the context of depression.

Alshammari T. K. (2020). The Ketamine Antidepressant Story: New Insights. Molecules (Basel, Switzerland), 25(23), 5777. https://doi.org/10.3390/molecules25235777

Link to full text

Effects of a single dose of psilocybin on behaviour, brain 5-HT 2A receptor occupancy and gene expression in the pig

Abstract

Psilocybin has in some studies shown promise as treatment of major depressive disorder and psilocybin therapy was in 2019 twice designated as breakthrough therapy by the U.S. Food and Drug Administration (FDA). A very particular feature is that ingestion of just a single dose of psilocybin is associated with lasting changes in personality and mood. The underlying molecular mechanism behind its effect is, however, unknown. In a translational pig model, we here present the effects of a single dose of psilocybin on pig behaviour, receptor occupancy and gene expression in the brain. An acute i.v. injection of 0.08 mg/kg psilocybin to awake female pigs induced characteristic behavioural changes in terms of headshakes, scratching and rubbing, lasting around 20 min. A similar dose was associated with a cerebral 5-HT2A receptor occupancy of 67%, as determined by positron emission tomography, and plasma psilocin levels were comparable to what in humans is associated with an intense psychedelic experience. We found that 19 genes were differentially expressed in prefrontal cortex one day after psilocybin injection, and 3 genes after 1 week. Gene Set Enrichment Analysis demonstrated that multiple immunological pathways were regulated 1 week after psilocybin exposure. This provides a framework for future investigations of the lasting molecular mechanisms induced by a single dose of psilocybin. In the light of an ongoing debate as to whether psilocybin is a safe treatment for depression and other mental illnesses, it is reassuring that our data suggest that any effects on gene expression are very modest.

Donovan, L. L., Johansen, J. V., Ros, N. F., Jaberi, E., Linnet, K., Johansen, S. S., Ozenne, B., Issazadeh-Navikas, S., Hansen, H. D., & Knudsen, G. M. (2021). Effects of a single dose of psilocybin on behaviour, brain 5-HT2A receptor occupancy and gene expression in the pig. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 42, 1–11. https://doi.org/10.1016/j.euroneuro.2020.11.013

Link to full text

Modulation of the functional connectome in major depressive disorder by ketamine therapy

Abstract

Background: Subanesthetic ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depression. How single and repeated ketamine treatment modulates the whole-brain functional connectome to affect clinical outcomes remains uncharacterized.

Methods: Data-driven whole brain functional connectivity (FC) analysis was used to identify the functional connections modified by ketamine treatment in patients with major depressive disorder (MDD). MDD patients (N = 61, mean age = 38, 19 women) completed baseline resting-state (RS) functional magnetic resonance imaging and depression symptom scales. Of these patients, n = 48 and n = 51, completed the same assessments 24 h after receiving one and four 0.5 mg/kg intravenous ketamine infusions. Healthy controls (HC) (n = 40, 24 women) completed baseline assessments with no intervention. Analysis of RS FC addressed effects of diagnosis, time, and remitter status.

Results: Significant differences (p < 0.05, corrected) in RS FC were observed between HC and MDD at baseline in the somatomotor network and between association and default mode networks. These disruptions in FC in MDD patients trended toward control patterns with ketamine treatment. Furthermore, following serial ketamine infusions, significant decreases in FC were observed between the cerebellum and salience network (SN) (p < 0.05, corrected). Patient remitters showed increased FC between the cerebellum and the striatum prior to treatment that decreased following treatment, whereas non-remitters showed the opposite pattern.

Conclusion: Results support that ketamine treatment leads to neurofunctional plasticity between distinct neural networks that are shown as disrupted in MDD patients. Cortico-striatal-cerebellar loops that encompass the SN could be a potential biomarker for ketamine treatment.

Sahib, A. K., Loureiro, J. R., Vasavada, M., Anderson, C., Kubicki, A., Wade, B., Joshi, S. H., Woods, R. P., Congdon, E., Espinoza, R., & Narr, K. L. (2020). Modulation of the functional connectome in major depressive disorder by ketamine therapy. Psychological medicine, 1–10. Advance online publication. https://doi.org/10.1017/S0033291720004560

Link to full text

16 May - Pathway to Access Summit | Pre-event Online Q&A

X