OPEN Foundation

Neuroscience

Reviewing the ketamine model for schizophrenia

Abstract

The observation that antagonists of the N-methyl-D-aspartate receptor (NMDAR), such as phencyclidine (PCP) and ketamine, transiently induce symptoms of acute schizophrenia had led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. The glutamate hypothesis can explain negative and cognitive symptoms of schizophrenia better than the dopamine hypothesis, and has the potential to explain dopamine dysfunction itself. The pharmacological and psychomimetic effects of ketamine, which is safer for human subjects than phencyclidine, are herein reviewed. Ketamine binds to a variety of receptors, but principally acts at the NMDAR, and convergent genetic and molecular evidence point to NMDAR hypofunction in schizophrenia. Furthermore, NMDAR hypofunction can explain connectional and oscillatory abnormalities in schizophrenia in terms of both weakened excitation of inhibitory γ-aminobutyric acidergic (GABAergic) interneurons that synchronize cortical networks and disinhibition of principal cells. Individuals with prenatal NMDAR aberrations might experience the onset of schizophrenia towards the completion of synaptic pruning in adolescence, when network connectivity drops below a critical value. We conclude that ketamine challenge is useful for studying the positive, negative, and cognitive symptoms, dopaminergic and GABAergic dysfunction, age of onset, functional dysconnectivity,and abnormal cortical oscillations observed in acute schizophrenia.

Frohlich, J., & van Horn, J. D. (2014). Reviewing the ketamine model for schizophrenia. Journal of Psychopharmacology, 28(4), 287-302. http://dx.doi.org/10.1177/0269881113512909
Link to full text

Serotonergic hyperactivity as a potential factor in developmental, acquired and drug-induced synesthesia

Abstract

Though synesthesia research has seen a huge growth in recent decades, and tremendous progress has been made in terms of understanding the mechanism and cause of synesthesia, we are still left mostly in the dark when it comes to the mechanistic commonalities (if any) among developmental, acquired and drug-induced synesthesia. We know that many forms of synesthesia involve aberrant structural or functional brain connectivity. Proposed mechanisms include direct projection and disinhibited feedback mechanisms, in which information from two otherwise structurally or functionally separate brain regions mix. We also know that synesthesia sometimes runs in families. However, it is unclear what causes its onset. Studies of psychedelic drugs, such as psilocybin, LSD and mescaline, reveal that exposure to these drugs can induce synesthesia. One neurotransmitter suspected to be central to the perceptual changes is serotonin. Excessive serotonin in the brain may cause many of the characteristics of psychedelic intoxication. Excessive serotonin levels may also play a role in synesthesia acquired after brain injury. In brain injury sudden cell death floods local brain regions with serotonin and glutamate. This neurotransmitter flooding could perhaps result in unusual feature binding. Finally, developmental synesthesia that occurs in individuals with autism may be a result of alterations in the serotonergic system, leading to a blockage of regular gating mechanisms. I conclude on these grounds that one commonality among at least some cases of acquired, developmental and drug-induced synesthesia may be the presence of excessive levels of serotonin, which increases the excitability and connectedness of sensory brain regions.

Brogaard, B. (2013). Serotonergic hyperactivity as a potential factor in developmental, acquired and drug-induced synesthesia. Frontiers in Human Neuroscience, 7, 1-13. http://dx.doi.org/10.3389/fnhum.2013.00657
Link to full text

MDMA enhances emotional empathy and prosocial behavior

Abstract

3,4-Methylenedioxymethamphetamine (MDMA, ‘ecstasy’) releases serotonin and norepinephrine. MDMA is reported to produce empathogenic and prosocial feelings. It is unknown whether MDMA in fact alters empathic concern and prosocial behavior. We investigated the acute effects of MDMA using the Multifaceted Empathy Test (MET), dynamic Face Emotion Recognition Task (FERT) and Social Value Orientation (SVO) test. We also assessed effects of MDMA on plasma levels of hormones involved in social behavior using a placebo-controlled, double-blind, random-order, cross-over design in 32 healthy volunteers (16 women). MDMA enhanced explicit and implicit emotional empathy in the MET and increased prosocial behavior in the SVO test in men. MDMA did not alter cognitive empathy in the MET but impaired the identification of negative emotions, including fearful, angry and sad faces, in the FERT, particularly in women. MDMA increased plasma levels of cortisol and prolactin, which are markers of serotonergic and noradrenergic activity, and of oxytocin, which has been associated with prosocial behavior. In summary, MDMA sex-specifically altered the recognition of emotions, emotional empathy and prosociality. These effects likely enhance sociability when MDMA is used recreationally and may be useful when MDMA is administered in conjunction with psychotherapy in patients with social dysfunction or post-traumatic stress disorder.

Hysek, C. M., Schmid, Y., Simmler, L. D., Domes, G., Heinrichs, M., Eisenegger, C., … Liechti, M. E. (2013). MDMA enhances emotional empathy and prosocial behavior. Social Cognitive & Affective Neuroscience, 9(11), 1645-1652. http://dx.doi.org/10.1093/scan/nst161
Link to full text

Broadband cortical desynchronization underlies the human psychedelic state

Abstract

Psychedelic drugs produce profound changes in consciousness, but the underlying neurobiological mechanisms for this remain unclear. Spontaneous and induced oscillatory activity was recorded in healthy human participants with magnetoencephalography after intravenous infusion of psilocybin—prodrug of the nonselective serotonin 2A receptor agonist and classic psychedelic psilocin. Psilocybin reduced spontaneous cortical oscillatory power from 1 to 50 Hz in posterior association cortices, and from 8 to 100 Hz in frontal association cortices. Large decreases in oscillatory power were seen in areas of the default-mode network. Independent component analysis was used to identify a number of resting-state networks, and activity in these was similarly decreased after psilocybin. Psilocybin had no effect on low-level visually induced and motor-induced gamma-band oscillations, suggesting that some basic elements of oscillatory brain activity are relatively preserved during the psychedelic experience. Dynamic causal modeling revealed that posterior cingulate cortex desynchronization can be explained by increased excitability of deep-layer pyramidal neurons, which are known to be rich in 5-HT2A receptors. These findings suggest that the subjective effects of psychedelics result from a desynchronization of ongoing oscillatory rhythms in the cortex, likely triggered by 5-HT2A receptor-mediated excitation of deep pyramidal cells.

Muthukumaraswamy, S. D., Carhart-Harris, R. L., Moran, R. J., Brookes, M. J., Williams, T. M., Errtizoe, D., … & Feilding, A. (2013). Broadband cortical desynchronization underlies the human psychedelic state. The Journal of Neuroscience, 33(38), 15171-15183. 10.1523/JNEUROSCI.2063-13.2013
Link to full text

Spatiotemporal Brain Dynamics of Emotional Face Processing Modulations Induced by the Serotonin 1A/2A Receptor Agonist Psilocybin

Abstract

Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168–189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211–242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168–189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211–242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control.

Bernasconi, F., Schmidt, A., Pokorny, T., Kometer, M., Seifritz, E., & Vollenweider, F. X. (2013). Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin. Cerebral Cortex, bht178. 10.1093/cercor/bht178
Link to full text

Acute effects of ayahuasca on neuropsychological performance: differences in executive function between experienced and occasional users.

Abstract

BACKGROUND:
Ayahuasca, a South American psychotropic plant tea containing the psychedelic 5-HT2A receptor agonist N,N-dimethyltryptamine, has been shown to increase regional cerebral blood flow in prefrontal brain regions after acute administration to humans. Despite interactions at this level, neuropsychological studies have not found cognitive deficits in abstinent long-term users.

OBJECTIVES:
Here, we wished to investigate the effects of acute ayahuasca intake on neuropsychological performance, specifically on working memory and executive function.

METHODS:
Twenty-four ayahuasca users (11 long-term experienced users and 13 occasional users) were assessed in their habitual setting using the Stroop, Sternberg, and Tower of London tasks prior to and following ayahuasca intake.

RESULTS:
Errors in the Sternberg task increased, whereas reaction times in the Stroop task decreased and accuracy was maintained for the whole sample following ayahuasca intake. Interestingly, results in the Tower of London showed significantly increased execution and resolution times and number of movements for the occasional but not the experienced users. Additionally, a correlation analysis including all subjects showed that impaired performance in the Tower of London was inversely correlated with lifetime ayahuasca use.

CONCLUSIONS:
Acute ayahuasca administration impaired working memory but decreased stimulus-response interference. Interestingly, detrimental effects on higher cognition were only observed in the less experienced group. Rather than leading to increased impairment, greater prior exposure to ayahuasca was associated with reduced incapacitation. Compensatory or neuromodulatory effects associated with long-term ayahuasca intake could underlie preserved executive function in experienced users.

Bouso, J. C., Fábregas, J. M., Antonijoan, R. M., Rodríguez-Fornells, A., & Riba, J. (2013). Acute effects of ayahuasca on neuropsychological performance: differences in executive function between experienced and occasional users. Psychopharmacology, 230(3), 415-424. http://dx.doi.org/10.1007/s00213-013-3167-9
Link to full text

Effects of Schedule I drug laws on neuroscience research and treatment innovation

Abstract

Many psychoactive drugs are used recreationally, particularly by young people. This use and its perceived dangers have led to many different classes of drugs being banned under national laws and international conventions. Indeed, the possession of cannabis, 3,4‑methylenedioxy‑N‑methylamphetamine (MDMA; also known as ecstasy) and psychedelics is stringently regulated. An important and unfortunate outcome of the controls placed on these and other psychoactive drugs is that they make research into their mechanisms of action and potential therapeutic uses — for example, in depression and post‑traumatic stress disorder — difficult and in many cases almost impossible.

Nutt, D. J., King, L. A., & Nichols, D. E. (2013). Effects of Schedule I drug laws on neuroscience research and treatment innovation. Nature Reviews Neuroscience, 14, 577-585. http://dx.doi.org/10.1038/nrn3530
Link to full text

The Ketamine Analogue Methoxetamine and 3- and 4-Methoxy Analogues of Phencyclidine Are High Affinity and Selective Ligands for the Glutamate NMDA Receptor

Abstract

In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as ‘designer drugs’ and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS)2-(ethylamino)-2-(3-methoxyphenyl)cyclohexanone) and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenyl)cyclohexanamine) and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenyl)cyclohexyl]piperidine and 1-[1-(4-methoxyphenyl)cyclohexyl]piperidine), were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects.

Roth, B. L., Gibbons, S., Arunotayanun, W., Huang, X. P., Setola, V., Treble, R., & Iversen, L. (2013). The ketamine analogue methoxetamine and 3-and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor. PLoS One, 8(3), e59334. http://dx.doi.org/10.1371%2Fjournal.pone.0059334
Link to full text

Hallucinogen persisting perception disorder: what do we know after 50 years?

Abstract

‘Flashbacks’ following use of hallucinogenic drugs have been reported for decades; they are recognized in DSM-IV as ‘Hallucinogen Persisting Perception Disorder (Flashbacks)’, or HPPD. We located and analyzed 20 quantitative studies between 1955 and 2001 examining this phenomenon. However, many of these studies were performed before operational criteria for HPPD were published in DSM-III-R, so they are difficult to interpret in the light of current diagnostic criteria. Overall, current knowledge of HPPD remains very limited. In particular (1) the term ‘flashbacks’ is defined in so many ways that it is essentially valueless; (2) most studies provide too little information to judge how many cases could meet DSM-IV criteria for HPPD; and consequently (3) information about risk factors for HPPD, possible etiologic mechanisms, and potential treatment modalities must be interpreted with great caution. At present, HPPD appears to be a genuine but uncommon disorder, sometimes persisting for months or years after hallucinogen use and causing substantial morbidity. It is reported most commonly after illicit LSD use, but less commonly with LSD administered in research or treatment settings, or with use of other types of hallucinogens. There are case reports, but no randomized controlled trials, of successful treatment with neuroleptics, anticonvulsants, benzodiazepines, and clonidine. Although it may be difficult to collect large samples of HPPD cases, further studies are critically needed to augment the meager data presently available regarding the prevalence, etiology, and treatment of HPPD.

Halpern, J. H., & Harrison, G. P. Jr. (2003). Hallucinogen persisting perception disorder: what do we know after 50 years? Drug and Alcohol Dependence, 69(2), 109-119. http://dx.doi.org/10.1016/S0376-8716(02)00306-X
Link to full text

Studying the Effects of Classic Hallucinogens in the Treatment of Alcoholism: Rationale, Methodology, and Current Research with Psilocybin

Abstract

Recent developments in the study of classic hallucinogens, combined with a re-appraisal of the older literature, have led to a renewal of interest in possible therapeutic applications for these drugs, notably their application in the treatment of addictions. This article will first provide a brief review of the research literature providing direct and indirect support for the possible therapeutic effects of classic hallucinogens such as psilocybin and lysergic acid diethylamide (LSD) in the treatment of addictions. Having provided a rationale for clinical investigation in this area, we discuss design issues in clinical trials using classic hallucinogens, some of which are unique to this class of drug. We then discuss the current status of this field of research and design considerations in future randomized trials.

Bogenschutz, M. P. (2013). Studying the Effects of Classic Hallucinogens in the Treatment of Alcoholism: Rationale, Methodology, and Current Research with Psilocybin. Current Drug Abuse Reviews, 6(1), 17-29.
Link to full text

7 May - Psychedelics, Nature & Mental Health with Sam Gandy

X