OPEN Foundation

S. Muthukumaraswamy

Decreased directed functional connectivity in the psychedelic state.

Abstract

Neuroimaging studies of the psychedelic state offer a unique window onto the neural basis of conscious perception and selfhood. Despite well understood pharmacological mechanisms of action, the large-scale changes in neural dynamics induced by psychedelic compounds remain poorly understood. Using source-localised, steady-state MEG recordings, we describe changes in functional connectivity following the controlled administration of LSD, psilocybin and low-dose ketamine, as well as, for comparison, the (non-psychedelic) anticonvulsant drug tiagabine. We compare both undirected and directed measures of functional connectivity between placebo and drug conditions. We observe a general decrease in directed functional connectivity for all three psychedelics, as measured by Granger causality, throughout the brain. These data support the view that the psychedelic state involves a breakdown in patterns of functional organisation or information flow in the brain. In the case of LSD, the decrease in directed functional connectivity is coupled with an increase in undirected functional connectivity, which we measure using correlation and coherence. This surprising opposite movement of directed and undirected measures is of more general interest for functional connectivity analyses, which we interpret using analytical modelling. Overall, our results uncover the neural dynamics of information flow in the psychedelic state, and highlight the importance of comparing multiple measures of functional connectivity when analysing time-resolved neuroimaging data.

Barnett, L., Muthukumaraswamy, S. D., Carhart-Harris, R. L., & Seth, A. K. (2019). Decreased directed functional connectivity in the psychedelic state. NeuroImage, 116462., https://doi.org/10.1016/j.neuroimage.2019.116462
Link to full text

Ketamine Enhances Visual Sensory Evoked Potential Long-term Potentiation in Patients With Major Depressive Disorder

Abstract

Background: The rapid-acting clinical effects of ketamine as a novel treatment for depression along with its complex pharmacology have made it a growing research area. One of the key mechanistic hypotheses for how ketamine works to alleviate depression is by enhancing long-term potentiation (LTP)-mediated neural plasticity.

Methods: The objective of this study was to investigate the plasticity hypothesis in 30 patients with depression noninvasively using visual LTP as an index of neural plasticity. In a double-blind, active placebo-controlled crossover trial, electroencephalography-based LTP was recorded approximately 3 to 4 hours following a single 0.44-mg/kg intravenous dose of ketamine or active placebo (1.7 ng/mL remifentanil) in 30 patients. Montgomery-Åsberg Depression Rating Scale scores were used to measure clinical symptoms. Visual LTP was measured as a change in the visually evoked potential following high-frequency visual stimulation. Dynamic causal modeling investigated the underlying neural architecture of visual LTP and the contribution of ketamine.

Results: Montgomery-Åsberg Depression Rating Scale scores revealed that 70% of participants experienced 50% or greater reduction in their depression symptoms within 1 day of receiving ketamine. LTP was demonstrated in the N1 (p = .00002) and P2 (p = 2.31 × 10-11) visually evoked components. Ketamine specifically enhanced P2 potentiation compared with placebo (p = .017). Dynamic causal modeling replicated the recruitment of forward and intrinsic connections for visual LTP and showed complementary effects of ketamine indicative of downstream and proplasticity modulation.

Conclusions: This study provides evidence that LTP-based neural plasticity increases within the time frame of the antidepressant effects of ketamine in humans and supports the hypothesis that changes to neural plasticity may be key to the antidepressant properties of ketamine.

Sumner, R. L., McMillan, R., Spriggs, M. J., Campbell, D., Malpas, G., Maxwell, E., Deng, C., Hay, J., Ponton, R., Kirk, I. J., Sundram, F., & Muthukumaraswamy, S. D. (2020). Ketamine Enhances Visual Sensory Evoked Potential Long-term Potentiation in Patients With Major Depressive Disorder. Biological psychiatry. Cognitive neuroscience and neuroimaging, 5(1), 45–55. https://doi.org/10.1016/j.bpsc.2019.07.002

Link to full text

Spectral signatures of serotonergic psychedelics and glutamatergic dissociatives

Abstract

Classic serotonergic psychedelics are remarkable for their capacity to induce reversible alterations in consciousness of the self and the surroundings, mediated by agonism at serotonin 5-HT2A receptors. The subjective effects elicited by dissociative drugs acting as N-methyl-D-aspartate (NMDA) antagonists (e.g. ketamine and phencyclidine) overlap in certain domains with those of serotonergic psychedelics, suggesting some potential similarities in the brain activity patterns induced by both classes of drugs, despite different pharmacological mechanisms of action. We investigated source-localized magnetoencephalography recordings to determine the frequency-specific changes in oscillatory activity and long-range functional coupling that are common to two serotonergic compounds (lysergic acid diethylamide [LSD] and psilocybin) and the NMDA-antagonist ketamine. Administration of the three drugs resulted in widespread and broadband spectral power reductions. We established their similarity by using different pairs of compounds to train and subsequently evaluate multivariate machine learning classifiers. After applying the same methodology to functional connectivity values, we observed a pattern of occipital, parietal and frontal decreases in the low alpha and theta bands that were specific to LSD and psilocybin, as well as decreases in the low beta band common to the three drugs. Our results represent a first effort in the direction of quantifying the similarity of large-scale brain activity patterns induced by drugs of different mechanism of action, confirming the link between changes in theta and alpha oscillations and 5-HT2A agonism, while also revealing the decoupling of activity in the beta band as an effect shared between NMDA antagonists and 5-HT2A agonists. We discuss how these frequency-specific convergences and divergences in the power and functional connectivity of brain oscillations might relate to the overlapping subjective effects of serotonergic psychedelics and glutamatergic dissociative compounds.

Pallavicini, C., Vilas, M. G., Villarreal, M., Zamberlan, F., Muthukumaraswamy, S., Nutt, D., … & Tagliazucchi, E. (2019). Spectral signatures of serotonergic psychedelics and glutamatergic dissociatives. NeuroImage., 10.1016/j.neuroimage.2019.06.053
Link to full text

LSD modulates effective connectivity and neural adaptation mechanisms in an auditory oddball paradigm

Abstract

Under the predictive coding framework, perceptual learning and inference are dependent on the interaction between top-down predictions and bottom-up sensory signals both between and within regions in a network. However, how such feedback and feedforward connections are modulated in the state induced by lysergic acid diethylamide (LSD) is poorly understood. In this study, an auditory oddball paradigm was presented to healthy participants (16 males, 4 female) under LSD and placebo, and brain activity was recorded using magnetoencephalography (MEG). Scalp level Event Related Fields (ERF) revealed reduced neural adaptation to familiar stimuli, and a blunted neural ‘surprise’ response to novel stimuli in the LSD condition. Dynamic causal modelling revealed that both the presentation of novel stimuli and LSD modulate backward extrinsic connectivity within a task-activated fronto-temporal network, as well as intrinsic connectivity in the primary auditory cortex. These findings show consistencies with those of previous studies of schizophrenia and ketamine but also studies of reduced consciousness – suggesting that rather than being a marker of conscious level per se, backward connectivity may index modulations of perceptual learning common to a variety of altered states of consciousness, perhaps united by a shared altered sensitivity to environmental stimuli. Since recent evidence suggests that the psychedelic state may correspond to a heightened ‘level’ of consciousness with respect to the normal waking state, our data warrant a re-examination of the top-down hypotheses of conscious level and suggest that several altered states may feature this specific biophysical effector.
Timmermann, C., Spriggs, M. J., Kaelen, M., Leech, R., Nutt, D. J., Moran, R. J., … & Muthukumaraswamy, S. D. (2017). LSD modulates effective connectivity and neural adaptation mechanisms in an auditory oddball paradigm. Neuropharmacology. 10.1016/j.neuropharm.2017.10.039
Link to full text

Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin

Abstract

What is the level of consciousness of the psychedelic state? Empirically, measures of neural signal diversity such as entropy and Lempel-Ziv (LZ) complexity score higher for wakeful rest than for states with lower conscious level like propofol-induced anesthesia. Here we compute these measures for spontaneous magnetoencephalographic (MEG) signals from humans during altered states of consciousness induced by three psychedelic substances: psilocybin, ketamine and LSD. For all three, we find reliably higher spontaneous signal diversity, even when controlling for spectral changes. This increase is most pronounced for the single-channel LZ complexity measure, and hence for temporal, as opposed to spatial, signal diversity. We also uncover selective correlations between changes in signal diversity and phenomenological reports of the intensity of psychedelic experience. This is the first time that these measures have been applied to the psychedelic state and, crucially, that they have yielded values exceeding those of normal waking consciousness. These findings suggest that the sustained occurrence of psychedelic phenomenology constitutes an elevated level of consciousness – as measured by neural signal diversity.
Schartner, M. M., Carhart-Harris, R. L., Barrett, A. B., Seth, A. K., & Muthukumaraswamy, S. D. (2017). Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Scientific Reports, 7. 10.1038/srep46421
Link to full text

Neural correlates of the LSD experience revealed by multimodal neuroimaging

Abstract

Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD’s marked effects on the visual cortex did not significantly correlate with the drug’s other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of “ego-dissolution” and “altered meaning,” implying the importance of this particular circuit for the maintenance of “self” or “ego” and its processing of “meaning.” Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.

Carhart-Harris, R. L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., Murphy, K., … & Leech, R. (2016). Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proceedings of the National Academy of Sciences, 201518377. http://dx.doi.org/10.1073/pnas.1518377113
Link to full text

Increased Global Functional Connectivity Correlates with LSD-Induced Ego Dissolution

Abstract

Lysergic acid diethylamide (LSD) is a non-selective serotonin-receptor agonist that was first synthesized in 1938 and identified as (potently) psychoactive in 1943. Psychedelics have been used by indigenous cultures for millennia [fusion_builder_container hundred_percent=”yes” overflow=”visible”][fusion_builder_row][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”][1]; however, because of LSD’s unique potency and the timing of its discovery (coinciding with a period of major discovery in psychopharmacology), it is generally regarded as the quintessential contemporary psychedelic [2]. LSD has profound modulatory effects on consciousness and was used extensively in psychological research and psychiatric practice in the 1950s and 1960s [3]. In spite of this, however, there have been no modern human imaging studies of its acute effects on the brain. Here we studied the effects of LSD on intrinsic functional connectivity within the human brain using fMRI. High-level association cortices (partially overlapping with the default-mode, salience, and frontoparietal attention networks) and the thalamus showed increased global connectivity under the drug. The cortical areas showing increased global connectivity overlapped significantly with a map of serotonin 2A (5-HT2A) receptor densities (the key site of action of psychedelic drugs [4]). LSD also increased global integration by inflating the level of communication between normally distinct brain networks. The increase in global connectivity observed under LSD correlated with subjective reports of “ego dissolution.” The present results provide the first evidence that LSD selectively expands global connectivity in the brain, compromising the brain’s modular and “rich-club” organization and, simultaneously, the perceptual boundaries between the self and the environment.

Tagliazucchi, E., Roseman, L., Kaelen, M., Orban, C., Muthukumaraswamy, S. D., Murphy, K., … & Bullmore, E. (2016). Increased Global Functional Connectivity Correlates with LSD-Induced Ego Dissolution. Current Biology. http://dx.doi.org/10.1016/j.cub.2016.02.010

Link to full text

[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Acute Biphasic Effects of Ayahuasca

Abstract

Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca’s compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8–13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30–50 and 50–100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca’s chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it’s potential therapeutic effects is offered.

Schenberg E.E., Alexandre J.F.M., Filev R., Cravo A.M., Sato J.R., Muthukumaraswamy S.D., et al. (2015) Acute Biphasic Effects of Ayahuasca. PLoS ONE 10(9): e0137202. http://dx.doi.org/10.1371/journal.pone.0137202
Link to full text

Broadband cortical desynchronization underlies the human psychedelic state

Abstract

Psychedelic drugs produce profound changes in consciousness, but the underlying neurobiological mechanisms for this remain unclear. Spontaneous and induced oscillatory activity was recorded in healthy human participants with magnetoencephalography after intravenous infusion of psilocybin—prodrug of the nonselective serotonin 2A receptor agonist and classic psychedelic psilocin. Psilocybin reduced spontaneous cortical oscillatory power from 1 to 50 Hz in posterior association cortices, and from 8 to 100 Hz in frontal association cortices. Large decreases in oscillatory power were seen in areas of the default-mode network. Independent component analysis was used to identify a number of resting-state networks, and activity in these was similarly decreased after psilocybin. Psilocybin had no effect on low-level visually induced and motor-induced gamma-band oscillations, suggesting that some basic elements of oscillatory brain activity are relatively preserved during the psychedelic experience. Dynamic causal modeling revealed that posterior cingulate cortex desynchronization can be explained by increased excitability of deep-layer pyramidal neurons, which are known to be rich in 5-HT2A receptors. These findings suggest that the subjective effects of psychedelics result from a desynchronization of ongoing oscillatory rhythms in the cortex, likely triggered by 5-HT2A receptor-mediated excitation of deep pyramidal cells.

Muthukumaraswamy, S. D., Carhart-Harris, R. L., Moran, R. J., Brookes, M. J., Williams, T. M., Errtizoe, D., … & Feilding, A. (2013). Broadband cortical desynchronization underlies the human psychedelic state. The Journal of Neuroscience, 33(38), 15171-15183. 10.1523/JNEUROSCI.2063-13.2013
Link to full text

30 April - Q&A with Rick Strassman

X