OPEN Foundation

A. Feilding

Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans

Abstract

Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans.

Valle, M., Maqueda, A. E., Rabella, M., Rodríguez-Pujadas, A., Antonijoan, R. M., Romero, S., … & Feilding, A. (2016). Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans. European Neuropsychopharmacology. http://dx.doi.org/10.1016/j.euroneuro.2016.03.012

Link to full text

Decreased mental time travel to the past correlates with default-mode network disintegration under lysergic acid diethylamide

Abstract

This paper reports on the effects of LSD on mental time travel during spontaneous mentation. Twenty healthy volunteers participated in a placebo-controlled crossover study, incorporating intravenous administration of LSD (75 μg) and placebo (saline) prior to functional magnetic resonance imaging (fMRI). Six independent, blind judges analysed mentation reports acquired during structured interviews performed shortly after the functional magnetic resonance imaging (fMRI) scans (approximately 2.5 h post-administration). Within each report, specific linguistic references to mental spaces for the past, present and future were identified. Results revealed significantly fewer mental spaces for the past under LSD and this effect correlated with the general intensity of the drug’s subjective effects. No differences in the number of mental spaces for the present or future were observed. Consistent with the previously proposed role of the default-mode network (DMN) in autobiographical memory recollection and ruminative thought, decreased resting-state functional connectivity (RSFC) within the DMN correlated with decreased mental time travel to the past. These results are discussed in relation to potential therapeutic applications of LSD and related psychedelics, e.g. in the treatment of depression, for which excessive reflection on one’s past, likely mediated by DMN functioning, is symptomatic.

Speth, J., Speth, C., Kaelen, M., Schloerscheidt, A. M., Feilding, A., Nutt, D. J., & Carhart-Harris, R. L. (2016). Decreased mental time travel to the past correlates with default-mode network disintegration under lysergic acid diethylamide. Journal of psychopharmacology (Oxford, England), 30(4), 344. http://dx.doi.org/10.1177/0269881116628430

Link to full text

Exploring the therapeutic potential of Ayahuasca: acute intake increases mindfulness-related capacities

Abstract

BACKGROUND:

Ayahuasca is a psychotropic plant tea used for ritual purposes by the indigenous populations of the Amazon. In the last two decades, its use has expanded worldwide. The tea contains the psychedelic 5-HT2A receptor agonist N,N-dimethyltryptamine (DMT), plus β-carboline alkaloids with monoamine-oxidase-inhibiting properties. Acute administration induces an introspective dream-like experience characterized by visions and autobiographic and emotional memories. Studies of long-term users have suggested its therapeutic potential, reporting that its use has helped individuals abandon the consumption of addictive drugs. Furthermore, recent open-label studies in patients with treatment-resistant depression found that a single ayahuasca dose induced a rapid antidepressant effect that was maintained weeks after administration. Here, we conducted an exploratory study of the psychological mechanisms that could underlie the beneficial effects of ayahuasca.

METHODS:

We assessed a group of 25 individuals before and 24 h after an ayahuasca session using two instruments designed to measure mindfulness capacities: The Five Facets Mindfulness Questionnaire (FFMQ) and the Experiences Questionnaire (EQ).

RESULTS:

Ayahuasca intake led to significant increases in two facets of the FFMQ indicating a reduction in judgmental processing of experiences and in inner reactivity. It also led to a significant increase in decentering ability as measured by the EQ. These changes are classic goals of conventional mindfulness training, and the scores obtained are in the range of those observed after extensive mindfulness practice.

CONCLUSIONS:

The present findings support the claim that ayahuasca has therapeutic potential and suggest that this potential is due to an increase in mindfulness capacities.

Link to full text

Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin

Abstract

Ego-disturbances have been a topic in schizophrenia research since the earliest clinical descriptions of the disorder. Manifesting as a feeling that one’s “self,” “ego,” or “I” is disintegrating or that the border between one’s self and the external world is dissolving, “ego-disintegration” or “dissolution” is also an important feature of the psychedelic experience, such as is produced by psilocybin (a compound found in “magic mushrooms”). Fifteen healthy subjects took part in this placebo-controlled study. Twelve-minute functional MRI scans were acquired on two occasions: subjects received an intravenous infusion of saline on one occasion (placebo) and 2 mg psilocybin on the other. Twenty-two visual analogue scale ratings were completed soon after scanning and the first principal component of these, dominated by items referring to “ego-dissolution”, was used as a primary measure of interest in subsequent analyses. Employing methods of connectivity analysis and graph theory, an association was found between psilocybin-induced ego-dissolution and decreased functional connectivity between the medial temporal lobe and high-level cortical regions. Ego-dissolution was also associated with a “disintegration” of the salience network and reduced interhemispheric communication. Addressing baseline brain dynamics as a predictor of drug-response, individuals with lower diversity of executive network nodes were more likely to experience ego-dissolution under psilocybin. These results implicate MTL-cortical decoupling, decreased salience network integrity, and reduced inter-hemispheric communication in psilocybin-induced ego disturbance and suggest that the maintenance of “self”or “ego,” as a perceptual phenomenon, may rest on the normal functioning of these systems.

Lebedev, A. V., Lövdén, M., Rosenthal, G., Feilding, A., Nutt, D. J., & Carhart‐Harris, R. L. (2015). Finding the self by losing the self: Neural correlates of ego‐dissolution under psilocybin. Human brain mapping. https://dx.doi.org/10.1002/hbm.22833
Link to full text

LSD enhances suggestibility in healthy volunteers

Abstract

Rationale
Lysergic acid diethylamide (LSD) has a history of use as a psychotherapeutic aid in the treatment of mood disorders and addiction, and it was also explored as an enhancer of mind control.

Objectives
The present study sought to test the effect of LSD on suggestibility in a modern research study.

Methods
Ten healthy volunteers were administered with intravenous (i.v.) LSD (40–80 μg) in a within-subject placebo-controlled design. Suggestibility and cued mental imagery were assessed using the Creative Imagination Scale (CIS) and a mental imagery test (MIT). CIS and MIT items were split into two versions (A and B), balanced for ‘efficacy’ (i.e. A≈B) and counterbalanced across conditions (i.e. 50 % completed version ‘A’ under LSD). The MIT and CIS were issued 110 and 140 min, respectively, post-infusion, corresponding with the peak drug effects.

Results
Volunteers gave significantly higher ratings for the CIS (p = 0.018), but not the MIT (p = 0.11), after LSD than placebo. The magnitude of suggestibility enhancement under LSD was positively correlated with trait conscientiousness measured at baseline (p = 0.0005).

Conclusions
These results imply that the influence of suggestion is enhanced by LSD. Enhanced suggestibility under LSD may have implications for its use as an adjunct to psychotherapy, where suggestibility plays a major role. That cued imagery was unaffected by LSD implies that suggestions must be of a sufficient duration and level of detail to be enhanced by the drug. The results also imply that individuals with high trait conscientiousness are especially sensitive to the suggestibility-enhancing effects of LSD.

Carhart-Harris, R. L., Kaelen, M., Whalley, M. G., Bolstridge, M., Feilding, A. & Nutt, D.J. (2014). LSD enhances suggestibility in healthy volunteers. Psychopharmacology. http://dx.doi.org/10.1007/s00213-014-3714-z
Link to full text

The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers

Abstract

Perturbing a system and observing the consequences is a classic scientific strategy for understanding a phenomenon. Psychedelic drugs perturb consciousness in a marked and novel way and thus are powerful tools for studying its mechanisms. In the present analysis, we measured changes in resting-state functional connectivity (RSFC) between a standard template of different independent components analysis (ICA)-derived resting state networks (RSNs) under the influence of two different psychoactive drugs, the stimulant/psychedelic hybrid, MDMA, and the classic psychedelic, psilocybin. Both were given in placebo-controlled designs and produced marked subjective effects, although reports of more profound changes in consciousness were given after psilocybin. Between-network RSFC was generally increased under psilocybin, implying that networks become less differentiated from each other in the psychedelic state. Decreased RSFC between visual and sensorimotor RSNs was also observed. MDMA had a notably less marked effect on between-network RSFC, implying that the extensive changes observed under psilocybin may be exclusive to classic psychedelic drugs and related to their especially profound effects on consciousness. The novel analytical approach applied here may be applied to other altered states of consciousness to improve our characterization of different conscious states and ultimately advance our understanding of the brain mechanisms underlying them.

Roseman, L., Leech, R., Feilding, A., Nutt, D. J., & Carhart-Harris, R. L. (2014). The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers. Frontiers in Human Neuroscience, 8, 1-11. http://dx.doi.org/10.3389/fnhum.2014.00204
Link to full text

The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs

Abstract

Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neurodynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of “primary states” is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. Indeed, since there is a greater repertoire of connectivity motifs in the psychedelic state than in normal waking consciousness, this implies that primary states may exhibit “criticality,” i.e., the property of being poised at a “critical” point in a transition zone between order and disorder where certain phenomena such as power-law scaling appear. Moreover, if primary states are critical, then this suggests that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes normal waking consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organized activity within the default-mode network (DMN) and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled). These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as rapid eye movement (REM) sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetized state.

Carhart-Harris, R. L., Leech, R., Hellyer, P. J., Shanahan, M., Feilding, A., Tagliazucchi, E., Chialvo, D. R., & Nutt, D. (2014). The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience, 8, 1-22. http://dx.doi.org/10.3389/fnhum.2014.00020
Link to full text

Broadband cortical desynchronization underlies the human psychedelic state

Abstract

Psychedelic drugs produce profound changes in consciousness, but the underlying neurobiological mechanisms for this remain unclear. Spontaneous and induced oscillatory activity was recorded in healthy human participants with magnetoencephalography after intravenous infusion of psilocybin—prodrug of the nonselective serotonin 2A receptor agonist and classic psychedelic psilocin. Psilocybin reduced spontaneous cortical oscillatory power from 1 to 50 Hz in posterior association cortices, and from 8 to 100 Hz in frontal association cortices. Large decreases in oscillatory power were seen in areas of the default-mode network. Independent component analysis was used to identify a number of resting-state networks, and activity in these was similarly decreased after psilocybin. Psilocybin had no effect on low-level visually induced and motor-induced gamma-band oscillations, suggesting that some basic elements of oscillatory brain activity are relatively preserved during the psychedelic experience. Dynamic causal modeling revealed that posterior cingulate cortex desynchronization can be explained by increased excitability of deep-layer pyramidal neurons, which are known to be rich in 5-HT2A receptors. These findings suggest that the subjective effects of psychedelics result from a desynchronization of ongoing oscillatory rhythms in the cortex, likely triggered by 5-HT2A receptor-mediated excitation of deep pyramidal cells.

Muthukumaraswamy, S. D., Carhart-Harris, R. L., Moran, R. J., Brookes, M. J., Williams, T. M., Errtizoe, D., … & Feilding, A. (2013). Broadband cortical desynchronization underlies the human psychedelic state. The Journal of Neuroscience, 33(38), 15171-15183. 10.1523/JNEUROSCI.2063-13.2013
Link to full text

Crafting Music for Altered States and Psychedelic Spaces - Online Event - Jan 22nd