OPEN Foundation

Toxicology

A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum

Abstract

Ethnopharmacological relevance

The plants of the genus Peganum have a long history as a Chinese traditional medicine for the treatment of cough, hypertension, diabetes, asthma, jaundice, colic, lumbago, and many other human ailments. Additionally, the plants can be used as an amulet against evil-eye, dye and so on, which have become increasingly popular in Asia, Iran, Northwest India, and North Africa.

Aim of the review

The present paper reviewed the ethnopharmacology, phytochemistry, analytical methods, biological activities, metabolism, pharmacokinetics, toxicology, and drug interaction of the genus Peganum in order to assess the ethnopharmacological use and to explore therapeutic potentials and future opportunities for research.

Materials and methods

Information on studies of the genus Peganum was gathered via the Internet (using Google Scholar, Baidu Scholar, Elsevier, ACS, Pudmed, Web of Science, CNKI and EMBASE) and libraries. Additionally, information was also obtained from some local books, PhD and MS’s dissertations.

Results

The genus Peganum has played an important role in traditional Chinese medicine. The main bioactive metabolites of the genus include alkaloids, flavonoids, volatile oils, etc. Scientific studies on extracts and formulations revealed a wide range of pharmacological activities, such as cholinesterase and monoamine oxidase inhibitory activities, antitumor, anti-hypertension, anticoagulant, antidiabetic, antimicrobial, insecticidal, antiparasidal, anti-leishmaniasis, antioxidant, and anti-inflammatory.

Conclusions

Based on this review, there is some evidence for extracts’ pharmacological effects on Alzheimer’s and Parkinson’s diseases, cancer, diabetes, hypertension. Some indications from ethnomedicine have been confirmed by pharmacological effects, such as the cholinesterase, monoamine oxidase and DNA topoisomerase inhibitory activities, hypoglycemic and vasodilation effects of this genus. The available literature showed that most of the activities of the genus Peganum can be attributed to the active alkaloids. Data regarding many aspects of the genus such as mechanisms of actions, metabolism, pharmacokinetics, toxicology, potential drug interactions with standard-of-care medications is still limited which call for additional studies particularly in humans. Further assessments and clinical trials should be performed before it can be integrated into medicinal practices.

Li, S., Cheng, X., & Wang, C. (2017). A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum. Journal of Ethnopharmacology. 10.1016/j.jep.2017.03.049
Link to full text

Pharmacokinetics of Escalating Doses of Oral Psilocybin in Healthy Adults

Abstract

INTRODUCTION: Psilocybin is a psychedelic tryptamine that has shown promise in recent clinical trials for the treatment of depression and substance use disorders. This open-label study of the pharmacokinetics of psilocybin was performed to describe the pharmacokinetics and safety profile of psilocybin in sequential, escalating oral doses of 0.3, 0.45, and 0.6 mg/kg in 12 healthy adults.

METHODS: Eligible healthy adults received 6-8 h of preparatory counseling in anticipation of the first dose of psilocybin. The escalating oral psilocybin doses were administered at approximately monthly intervals in a controlled setting and subjects were monitored for 24 h. Blood and urine samples were collected over 24 h and assayed by a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for psilocybin and psilocin, the active metabolite. The pharmacokinetics of psilocin were determined using both compartmental (NONMEM) and noncompartmental (WinNonlin) methods.

RESULTS: No psilocybin was found in plasma or urine, and renal clearance of intact psilocin accounted for less than 2% of the total clearance. The pharmacokinetics of psilocin were linear within the twofold range of doses, and the elimination half-life of psilocin was 3 h (standard deviation 1.1). An extended elimination phase in some subjects suggests hydrolysis of the psilocin glucuronide metabolite. Variation in psilocin clearance was not predicted by body weight, and no serious adverse events occurred in the subjects studied.

CONCLUSIONS: The small amount of psilocin renally excreted suggests that no dose reduction is needed for subjects with mild-moderate renal impairment. Simulation of fixed doses using the pharmacokinetic parameters suggest that an oral dose of 25 mg should approximate the drug exposure of a 0.3 mg/kg oral dose of psilocybin. Although doses of 0.6 mg/kg are in excess of likely therapeutic doses, no serious physical or psychological events occurred during or within 30 days of any dose.

Brown, R. T., Nicholas, C. R., Cozzi, N. V., Gassman, M. C., Cooper, K. M., Muller, D., … & Hutson, P. R. (2017). Pharmacokinetics of Escalating Doses of Oral Psilocybin in Healthy Adults. Clinical Pharmacokinetics, 1-12. 10.1007/s40262-017-0540-6
Link to full text

LSD instead of 25I-NBOMe: The revival of LSD? A case report

Abstract

Observation: We report a case of a 25-year-old man crushed by a train while he was returning from a rave party. The consumption of 25I-NBOMe was rapidly evoked by people who had participated at the party.

Materials and methods: In this context, the post-mortem toxicological expertise was completed by a broad screening using high-resolution mass spectrometry detection (LC-HRMS). Three hundred NPS and metabolites (including 25B, 25C and 25I-NBOMes) can be found with this method. A targeted screening in MRM mode was also performed on a smaller number of hallucinogens.

Results: The toxicological analyses were performed on blood and urine samples. Amphetamines, cocaine, cannabinoids and opiates were not detected. Ethanol was measured at 0.71 g/L and 1.59 g/L in blood and urine samples, respectively. The screening by LC-HRMS did not reveal the presence of NPS, including NBOMes. The targeted screening in MRM mode revealed the presence of LSD and its metabolite, the 2-oxo-3-hydroxy-LSD. LSD was quantified at 0.2 ng/mL in blood.

Conclusion: This case alerts on the frequent confusion between NBOMes and LSD and on the renewed interest for LSD due to the popularity of NBOMes. This case therefore encourages the prudence and research of all hallucinogenic substances, even when the context is evocative.

Bodeau, S., Bennis, Y., Régnaut, O., Fabresse, N., Richeval, C., Humbert, L., … & Lemaire-Hurtel, A. S. (2017). LSD instead of 25I-NBOMe: The revival of LSD? A case report. Toxicologie Analytique et Clinique, 29(1), 139-143. 10.1016/j.toxac.2016.12.007
Link to full text

Toxicokinetics of ibogaine and noribogaine in a patient with prolonged multiple cardiac arrhythmias after ingestion of internet purchased ibogaine

Abstract

BACKGROUND:
Ibogaine is an agent that has been evaluated as an unapproved anti-addictive agent for the management of drug dependence. Sudden cardiac death has been described to occur secondary to its use. We describe the clinical effects and toxicokinetics of ibogaine and noribogaine in a single patient. For this purpose, we developed a LC-MS/MS-method to measure ibogaine and noribogaine plasma-concentrations. We used two compartments with first order absorption.
CASE DETAILS:
The maximum concentration of ibogaine was 1.45 mg/L. Our patient developed markedly prolonged QTc interval of 647ms maximum, several multiple cardiac arrhythmias (i.e., atrial tachycardia and ventricular tachycardia and Torsades des Pointes). QTc-prolongation remained present until 12 days after ingestion, several days after ibogaine plasma-levels were low, implicating clinically relevant noribogaine concentrations long after ibogaine had been cleared from the plasma. The ratio k12/k21 for noribogaine was 21.5 and 4.28 for ibogaine, implicating a lower distribution of noribogaine from the peripheral compartment into the central compartment compared to ibogaine.
CONCLUSIONS:
We demonstrated a linear relationship between the concentration of the metabolite and long duration of action, rather than with parent ibogaine. Therefore, after (prolonged) ibogaine ingestion, clinicians should beware of long-term effects due to its metabolite.
Henstra, M., Wong, L., Chahbouni, A., Swart, N., Allaart, C., & Sombogaard, F. (2017). Toxicokinetics of ibogaine and noribogaine in a patient with prolonged multiple cardiac arrhythmias after ingestion of internet purchased ibogaine. Clinical Toxicology55(6), 600-602. 10.1080/15563650.2017.1287372
Link to full text

Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance

Abstract

Psilocybin and psilocin are controlled substances in many countries. These are the two main hallucinogenic compounds of the “magic mushrooms” and both act as agonists or partial agonists at 5-hydroxytryptamine (5-HT)2A subtype receptors. During the last few years, psilocybin and psilocin have gained therapeutic relevance but considerable physiological variability between individuals that can influence dose-response and toxicological profile has been reported. This review aims to discuss metabolism of psilocybin and psilocin, by presenting all major and minor psychoactive metabolites. Psilocybin is primarily a pro-drug that is dephosphorylated by alkaline phosphatase to active metabolite psilocin. This last is then further metabolized, psilocin-O-glucuronide being the main urinary metabolite with clinical and forensic relevance in diagnosis.

Dinis-Oliveira, R. J. (2016). METABOLISM OF PSILOCYBIN AND PSILOCIN: CLINICAL AND FORENSIC TOXICOLOGICAL RELEVANCE. Drug Metabolism Reviews, (just-accepted), 1-21. 10.1080/03602532.2016.1278228
Link to full text

Pharmacogenetics of ecstasy: CYP1A2, CYP2C19, and CYP2B6 polymorphisms moderate pharmacokinetics of MDMA in healthy subjects

Abstract

In vitro studies showed that CYP2C19, CYP2B6, and CYP1A2 contribute to the metabolism of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) to 3,4-methylenedioxyamphetamine (MDA). However, the role of genetic polymorphisms in CYP2C19, CYP2B6, and CYP1A2 in the metabolism of MDMA in humans is unknown. The effects of genetic variants in these CYP enzymes on the pharmacokinetics and pharmacodynamics of MDMA were characterized in 139 healthy subjects (69 male, 70 female) in a pooled analysis of eight double-blind, placebo-controlled studies. MDMA-MDA conversion was positively associated with genotypes known to convey higher CYP2C19 or CYP2B6 activities. Additionally, CYP2C19 poor metabolizers showed greater cardiovascular responses to MDMA compared with other CYP2C19 genotypes. Furthermore, the maximum concentration of MDA was higher in tobacco smokers that harbored the inducible CYP1A2 rs762551 A/A genotype compared with the non-inducible C-allele carriers. The findings indicate that CYP2C19, CYP2B6, and CYP1A2 contribute to the metabolism of MDMA to MDA in humans. Additionally, genetic polymorphisms in CYP2C19 may moderate the cardiovascular toxicity of MDMA.

Vizeli, P., Schmid, Y., Prestin, K., zu Schwabedissen, H. E. M., & Liechti, M. E. (2017). Pharmacogenetics of ecstasy: CYP1A2, CYP2C19, and CYP2B6 polymorphisms moderate pharmacokinetics of MDMA in healthy subjects. European Neuropsychopharmacology, 27(3), 232-238. 10.1016/j.euroneuro.2017.01.008
Link to full text

Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens

Abstract

Serotonergic hallucinogens induce profound changes in perception and cognition. The characteristic effects of hallucinogens are mediated by 5-HT2A receptor activation. One class of hallucinogens are 2,5-dimethoxy-substituted phenethylamines, such as the so-called 2C-X compounds 2,5-dimethoxy-4-bromophenethylamine (2C-B) and 2,5-dimethoxy-4-iodophenethylamine (2C-I). Addition of an N-benzyl group to phenethylamine hallucinogens produces a marked increase in 5-HT2A-binding affinity and hallucinogenic potency. N-benzylphenethylamines (“NBOMes”) such as N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBOMe) show subnanomolar affinity for the 5-HT2A receptor and are reportedly highly potent in humans. Several NBOMEs have been available from online vendors since 2010, resulting in numerous cases of toxicity and multiple fatalities. This chapter reviews the structure–activity relationships, behavioral pharmacology, metabolism, and toxicity of members of the NBOMe hallucinogen class. Based on a review of 51 cases of NBOMe toxicity reported in the literature, it appears that rhabdomyolysis is a relatively common complication of severe NBOMe toxicity, an effect that may be linked to NBOMe-induced seizures, hyperthermia, and vasoconstriction.

Halberstadt, A. L. (2016). Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. 10.1007/7854_2016_64

Link to full text

Hyperthermia Severely Affects the Vascular Effects of MDMA and Metabolites in the Human Internal Mammary Artery In Vitro

Abstract

3,4-Methylenedioxymethamphetamine (MDMA or “ecstasy”) is a recreational drug used worldwide for its distinctive psychotropic effects. Although important cardiovascular effects, such as increased blood pressure and heart rate, have also been described, the vascular effects of MDMA and metabolites and their correlation with hyperthermia (major side effect of MDMA) are not yet fully understood and have not been previously reported. This study aimed at evaluating the effects of MDMA and its main catechol metabolites, alpha-methyldopamine (α-MeDA), N-methyl-alpha-methyldopamine (N-Me-α-MeDA), 5-(glutathion-S-yl)-alpha-methyldopamine [fusion_builder_container hundred_percent=”yes” overflow=”visible”][fusion_builder_row][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”][5-(GSH)-α-MeDA] and 5-(glutathion-S-yl)-N-methyl-alpha-methyldopamine [5-(GSH)-N-Me-α-MeDA], on the 5-HT-dependent vasoactivity in normothermia (37 °C) and hyperthermia (40 °C) of the human internal mammary artery (IMA) in vitro. The results showed the ability of MDMA, α-MeDA and N-Me-α-MeDA to exert vasoconstriction of the IMA which was considerably higher in hyperthermic conditions (about fourfold for MDMA and α-MeDA and twofold for N-Me-α-MeDA). The results also showed that all the compounds may influence the 5-HT-mediated concentration-dependent response of IMA, as MDMA, α-MeDA and N-Me-α-MeDA behaved as partial agonists and 5-(GSH)-α-MeDA and 5-(GSH)-N-Me-α-MeDA as antagonists. In conclusion, MDMA abuse may imply a higher cardiovascular risk associated both to MDMA and its metabolites that might be relevant in patients with underlying cardiovascular diseases, particularly in hyperthermia.

Fonseca, D. A., Guerra, A. F., Carvalho, F., Fernandes, E., Ferreira, L. M., Branco, P. S., … & Cotrim, M. D. (2017). Hyperthermia Severely Affects the Vascular Effects of MDMA and Metabolites in the Human Internal Mammary Artery In Vitro. Cardiovascular Toxicology, 1-12. 10.1007/s12012-017-9398-y
Link to full text

[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Ayahuasca Exposure: Descriptive Analysis of Calls to US Poison Control Centers from 2005 to 2015

Abstract

Background: Ayahuasca is a hallucinogenic plant preparation which usually contains the vine Banisteriopsis caapi and the shrub Psychotria viridis. This tea originates from the Amazon Basin where it is used in religious ceremonies. Because interest in these religious groups spreading as well as awareness of use of ayahuasca for therapeutic and recreational purposes, its use is increasing. Banisteriopsis caapi is rich in β-carbolines, especially harmine, tetrahydroharmine and harmaline, which have monoamine oxidase inhibiting (MAOI) activity. Psychotria viridis contains the 5HT2A/2C/1A receptor agonist hallucinogen N,N-dimethyltryptamine (DMT). Usual desired effects include hallucination, dissociation, mood alteration and perception change. Undesired findings previously reported are nausea, vomiting, hypertension, and tachycardia.

Methods: All human exposure calls reported to the American Association of Poison Controls Centers’ (AAPCC) National Poison Data System (NPDS) between September 1, 2005 and September 1, 2015 were reviewed. Cases were filtered for specific plant derived ayahuasca-related product codes. Abstracted data included the following: case age and gender, exposure reason, exposure route, clinical manifestations, treatments given, medical outcomes and fatality.

Results: Five hundred and thirty-eight exposures to ayahuasca botanical products were reported. The majority of the calls to poison control centers came from healthcare facilities (83%). The most common route of exposure was ingestion. Most cases were men (437, 81%, 95% CI 77.7% – 84.3%). The median age was 21 (IQR 18-29). Most exposures were acute. Three hundred thirty-seven (63%) were reported to have a major or moderate clinical effect. The most common clinical manifestations reported were hallucinations (35%), tachycardia (34%), agitation (34%), hypertension (16%), mydriasis (13%) and vomiting (6%). Benzodiazepines were commonly given (30%). There were 28 cases in the series who required endotracheal intubation (5%). Four cases were reported to have had a cardiac arrest and 7 a respiratory arrest. Twelve cases had a seizure. Reports of exposures called to poison centers appeared to increase during this period based on annual estimates. Three fatalities were reported.

Conclusions: Ayahuasca use appears to be rising in the United States based on calls to poison control centers. While most use is reported to be safe and well tolerated, with possible beneficial effects, serious and life threatening adverse manifestations are possible. Most of the exposures reported to poison control centers were young people, more likely to be men and already in a healthcare facility. Further research, which includes comprehensive drug testing, will be needed to better identify the risks and effects of ayahuasca use.

Heise, C. W., & Brooks, D. E. (2016). Ayahuasca exposure: descriptive analysis of calls to US poison control centers from 2005 to 2015. Journal of medical toxicology, 1-4. 10.1007/s13181-016-0593-1

Link to full text

A Case of 3,4-Dimethoxyamphetamine (3,4-DMA) and 3,4 Methylendioxymethamphetamine (MDMA) Toxicity with Possible Metabolic Interaction

Abstract

BACKGROUND: We present a case of “ecstasy” ingestion revealing 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-dimethoxyamphetamine (3,4-DMA) and absence of cytochrome P450 (CYP)-2D6 MDMA metabolites.

CASE REPORT: A 19-year-old presented following a seizure. Initial vital signs were normal. Laboratories were normal with the exception of sodium 127 mEq/L and urine drugs of abuse screen positive for amphetamines. Twelve hours later, serum sodium was 114 mEq/L and a second seizure occurred. After receiving hypertonic saline (3%), the patient had improvement in mental status and admitted to taking “ecstasy” at a rave prior to her initial presentation. Liquid chromatography-time-of-flight mass spectrometry (LC-TOF/MS) of serum and urine revealed MDMA, 3,4-DMA, and the CYP-2B6 MDMA metabolites 3,4-methylendioxyamphetamine (MDA) and 4-hydroxy-3-methoxyamphetamine (HMA). The CYP2D6 metabolites of MDMA, 3,4-dihydromethamphetamine (HHMA) and 4-hydroxy-3-methoxymethamphetamine (HMMA), were detected at very low levels.

CONCLUSION: This case highlights the polypharmacy which may exist among users of psychoactive illicit substances and demonstrates that concurrent use of MDMA and 3,4-DMA may predispose patients to severe toxicity. Toxicologists and other healthcare providers should be aware of this potential toxicity.

Darracq, M. A., Thornton, S. L., Minns, A. B., & Gerona, R. R. (2016). A Case of 3, 4-Dimethoxyamphetamine (3, 4-DMA) and 3, 4 Methylendioxymethamphetamine (MDMA) Toxicity with Possible Metabolic Interaction. Journal of Psychoactive Drugs, 1-4. 10.1080/02791072.2016.1225324
Link to full text

22 May - Delivering Effective Psychedelic Clinical Trials

X