OPEN Foundation

Author name: OPEN Foundation

Hallucinogenic Drugs: A New Study Answers Old Questions about LSD.

Abstract

LSD induces profound psychedelic effects, including changes in the meaning of percepts. The subjective effects of LSD are fully blocked by a 5-HT2A receptor antagonist. LSD may alter meaningfulness by increasing activity in cortical regions responsible for processing personal attribution.

Halberstadt, A. L. (2017). Hallucinogenic drugs: A new study answers old questions about LSD. Current Biology27(4), R156-R158., https://doi.org/10.1016/j.cub.2016.12.058
Link to full text

Hallucinogenic Drugs: A New Study Answers Old Questions about LSD. Read More »

22-azidosalvinorin A exhibits antidepressant-like effect in mice

Abstract

The increasing cases of depression has made the searches for new drugs and understanding of the underligning neurobiology of this psychiatric disorder a necessity. Here, we modified the structure of salvinorin A (a known halucinogen) and investigated antidepressant-like activity of its four derivatives; 22-methylsulfanylsalvinorin A(SA1), 2-O-cinnamoylsalvinorin B (CSB), 22-azidosalvinorin A (SA2), and 2-O-(4-azidophenylsulfonyl)salvinorin B (SA3). Prior to behavioural tests (Irwin test, open field test – OFT, forced swimming test – FST and tail suspension test – TST), SA1 was prepared by reacting salvinorin B and methylthioacetic acid with 89% yield; CSB was obtained from the reaction of salvinorin B and cinnamic acid with 92% yield; SA2 was obtained from the reaction of salvinorin B and azidoacetic acid with 81% yield; and SA3 was prepared by reacting salvinorin B with 4-azidophenylsulfonyl chloride with 80% yield. Oral treatment of mice with these derivatives (1–1000 mg/kg) did not elicit toxic sign or death. Unlike SA, SA1, CSB and SA3, treatment with SA2 (5, 10 and 20 mg/kg) decreased the immobility (TST and FST) and swimming time (FST) without altering locomotor activity in OFT. A decrease in the immobility time in TST and FST confirmed antidepressant-like property of SA2. Although p-chlorophenylalanine (serotonin depletor) or WAY100635 (selective 5-HT1A receptor antagonist) did not attenuate effect of SA2, alpha-methyl-para-tyrosine (catecholamine depletor) and prazosin (selective α1-receptor antagonist) attenuated this effect. SA2 mildly inhibited monoamine oxidase and showed affinity for α1A, α1B, α1D and κ-opioid receptor subtypes. In summary, SA2 induced monoamine-mediated antidepressant-like effect.

Fajemiroye, J. O., Prabhakar, P. R., da Cunha, C. L., Costa, E. A., & Zjawiony, J. K. (2017). 22-Azidosalvinorin A exhibits antidepressant-like effect in mice. European Journal of Pharmacology. 10.1016/j.ejphar.2017.02.031
Link to full text

22-azidosalvinorin A exhibits antidepressant-like effect in mice Read More »

Altered Insula Connectivity Under MDMA

Abstract

Recent work with noninvasive human brain imaging has started to investigate the effects of 3, 4-methylenedioxymethamphetamine (MDMA) on large-scale patterns of brain activity. MDMA, a potent monoamine-releaser with particularly pronounced serotonin- releasing properties, has unique subjective effects that include: marked positive mood, pleasant/unusual bodily sensations and pro-social, empathic feelings. However, the neurobiological basis for these effects is not properly understood, and the present analysis sought to address this knowledge gap. To do this, we administered MDMA-HCl (100 mg p.o.) and, separately, placebo (ascorbic acid) in a randomized, double-blind, repeated-measures design with twenty-five healthy volunteers undergoing fMRI scanning. We then employed a measure of global resting-state functional brain connectivity and follow-up seed-to-voxel analysis to the fMRI data we acquired. Results revealed decreased right insula/salience network functional connectivity under MDMA. Furthermore, these decreases in right insula/salience network connectivity correlated with baseline trait anxiety and acute experiences of altered bodily sensations under MDMA. The present findings highlight insular disintegration (ie, compromised salience network membership) as a neurobiological signature of the MDMA experience, and relate this brain effect to trait anxiety and acutely altered bodily sensations-both of which are known to be associated with insular functioning.

Walpola, I. C., Nest, T., Roseman, L., Erritzoe, D., Feilding, A., Nutt, D. J., & Carhart-Harris, R. L. (2017). Altered Insula Connectivity Under MDMA. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 10.1038/npp.2017.35
Link to full text

Altered Insula Connectivity Under MDMA Read More »

Pharmacokinetics and Pharmacodynamics of Lysergic Acid Diethylamide in Healthy Subjects

Abstract

Background and Objective: Lysergic acid diethylamide (LSD) is used recreationally and in clinical research. The aim of the present study was to characterize the pharmacokinetics and exposure–response relationship of oral LSD.

Methods: We analyzed pharmacokinetic data from two published placebo-controlled, double-blind, cross-over studies using oral administration of LSD 100 and 200 µg in 24 and 16 subjects, respectively. The pharmacokinetics of the 100-µg dose is shown for the first time and data for the 200-µg dose were reanalyzed and included. Plasma concentrations of LSD, subjective effects, and vital signs were repeatedly assessed. Pharmacokinetic parameters were determined using compartmental modeling. Concentration-effect relationships were described using pharmacokinetic-pharmacodynamic modeling.

Results: Geometric mean (95% confidence interval) maximum plasma concentration values of 1.3 (1.2–1.9) and 3.1 (2.6–4.0) ng/mL were reached 1.4 and 1.5 h after administration of 100 and 200 µg LSD, respectively. The plasma half-life was 2.6 h (2.2–3.4 h). The subjective effects lasted (mean ± standard deviation) 8.2 ± 2.1 and 11.6 ± 1.7 h for the 100- and 200-µg LSD doses, respectively. Subjective peak effects were reached 2.8 and 2.5 h after administration of LSD 100 and 200 µg, respectively. A close relationship was observed between the LSD concentration and subjective response within subjects, with moderate counterclockwise hysteresis. Half-maximal effective concentration values were in the range of 1 ng/mL. No correlations were found between plasma LSD concentrations and the effects of LSD across subjects at or near maximum plasma concentration and within dose groups.

Conclusions: The present pharmacokinetic data are important for the evaluation of clinical study findings (e.g., functional magnetic resonance imaging studies) and the interpretation of LSD intoxication. Oral LSD presented dose-proportional pharmacokinetics and first-order elimination up to 12 h. The effects of LSD were related to changes in plasma concentrations over time, with no evidence of acute tolerance.

Dolder, P. C., Schmid, Y., Steuer, A. E., Kraemer, T., Rentsch, K. M., Hammann, F., & Liechti, M. E. (2017). Pharmacokinetics and Pharmacodynamics of Lysergic Acid Diethylamide in Healthy Subjects. Clinical Pharmacokinetics, 1-12. 10.1007/s40262-017-0513-9

Link to full text

Pharmacokinetics and Pharmacodynamics of Lysergic Acid Diethylamide in Healthy Subjects Read More »

The association of psychedelic use and opioid use disorders among illicit users in the United States

The association of psychedelic use and opioid use disorders among illicit users in the United States Read More »

Short term changes in the proteome of human cerebral organoids induced by 5-methoxy-N,N-dimethyltryptamine

Abstract

Dimethyltryptamines are hallucinogenic serotonin-like molecules present in traditional Amerindian medicine (e.g. Ayahuasca, Virola) recently associated with cognitive gains, antidepressant effects and changes in brain areas related to attention, self-referential thought, and internal mentation. Historical and technical restrictions impaired understanding how such substances impact human brain metabolism. Here we used shotgun mass spectrometry to explore proteomic differences induced by dimethyltryptamine (5-methoxy-N,N-dimethyltryptamine, 5-MeO-DMT) on human cerebral organoids. Out of the 6,728 identified proteins, 934 were found differentially expressed in 5-MeO-DMT-treated cerebral organoids. In silico systems biology analyses support 5-MeO-DMT’s anti-inflammatory effects and reveal a modulation of proteins associated with the formation of dendritic spines, including proteins involved in cellular protrusion formation, microtubule dynamics and cytoskeletal reorganization. Proteins involved in long-term potentiation were modulated in a complex manner, with significant increases in the levels of NMDAR, CaMKII and CREB, but a reduction of PKA and PKC levels. These results offer possible mechanistic insights into the neuropsychological changes caused by the ingestion of substances rich in dimethyltryptamines.

Dakic, V., Nascimento, J. M., Sartore, R. C., de Moraes Maciel, R., de Araujo, D. B., Ribeiro, S., … & Rehen, S. K. (2017). Short term changes in the proteome of human cerebral organoids induced by 5-methoxy-N, N-dimethyltryptamine. bioRxiv, 108159.
Link to full text

Short term changes in the proteome of human cerebral organoids induced by 5-methoxy-N,N-dimethyltryptamine Read More »

Science, spirituality, and ayahuasca: The problem of consciousness and spiritual ontologies in the academy

Abstract

Ayahuasca is a psychoactive brew from Amazonas, popularized in the last decades in part through transnational religious networks, but also due to interest in exploring spirituality through altered states of consciousness among academic schools and scientific researchers. In this article, the author analyzes the relation between science and religion proposing that the “demarcation problem” between the two arises from the relations among consciousness, intentionality, and spirituality. The analysis starts at the beginning of modern science, continues through the nineteenth century, and then examines the appearance of new schools in psychology and anthropology in the countercultural milieu of the 1960s. The author analyzes the case of ayahuasca against this historical background, first, in the general context of ayahuasca studies in the academic field. Second, he briefly describes three cases from Spain. Finally, he discusses the permeability of science to “spiritual ontologies” from an interdisciplinary perspective, using insights from social and cognitive sciences.

Apud, I. (2017). Science, spirituality, and ayahuasca: The problem of consciousness and spiritual ontologies in the academy. Zygon®, 52(1), 100-123. 10.1111/zygo.12315
Link to full text

Science, spirituality, and ayahuasca: The problem of consciousness and spiritual ontologies in the academy Read More »

A unique natural selective kappa-opioid receptor agonist, salvinorin A, and its roles in human therapeutics

Abstract

Until the mid-60s, only the Mazatecs, an indigenous group from Oaxaca, Mexico, used Salvia Divinorum (S. divinorum) due to its hallucinogen properties.

Later it was found that the hallucinogen effects of this plant were caused by the presence of a neoclerodane diterpene Salvinorin A (salvinorin A), which is a highly selective agonist of kappa-opioid receptor (KOR) that cause more intense hallucinations than the common hallucinogens as lysergic acid, mushrooms, ecstasy and others. In fact, smoking of only 200–500 μg of S. divinorum leaves is enough to produce these effects thus making it the most potent natural occurring hallucinogen known.

Due to its legal status in various countries, this compound has gained a worldwide popularity as a drug of abuse with an easy access through smartshops and internet.

Furthermore, salvinorin A gathered an increased interest in the scientific community thanks to its unique structure and properties, and various studies demonstrated that salvinorin A has antinociceptive, antidepressant, in some circumstances pro-depressant and anti-addictive effects that have yielded potential new avenues for research underlying salvinorin A and its semi-synthetic analogs as therapeutic agents.

Cruz, A., Domingos, S., Gallardo, E., & Martinho, A. (2017). A unique natural selective kappa-opioid receptor agonist, salvinorin A, and its roles in human therapeutics. Phytochemistry. 10.1016/j.phytochem.2017.02.001
Link to full text

A unique natural selective kappa-opioid receptor agonist, salvinorin A, and its roles in human therapeutics Read More »

Toxicokinetics of ibogaine and noribogaine in a patient with prolonged multiple cardiac arrhythmias after ingestion of internet purchased ibogaine

Abstract

BACKGROUND:
Ibogaine is an agent that has been evaluated as an unapproved anti-addictive agent for the management of drug dependence. Sudden cardiac death has been described to occur secondary to its use. We describe the clinical effects and toxicokinetics of ibogaine and noribogaine in a single patient. For this purpose, we developed a LC-MS/MS-method to measure ibogaine and noribogaine plasma-concentrations. We used two compartments with first order absorption.
CASE DETAILS:
The maximum concentration of ibogaine was 1.45 mg/L. Our patient developed markedly prolonged QTc interval of 647ms maximum, several multiple cardiac arrhythmias (i.e., atrial tachycardia and ventricular tachycardia and Torsades des Pointes). QTc-prolongation remained present until 12 days after ingestion, several days after ibogaine plasma-levels were low, implicating clinically relevant noribogaine concentrations long after ibogaine had been cleared from the plasma. The ratio k12/k21 for noribogaine was 21.5 and 4.28 for ibogaine, implicating a lower distribution of noribogaine from the peripheral compartment into the central compartment compared to ibogaine.
CONCLUSIONS:
We demonstrated a linear relationship between the concentration of the metabolite and long duration of action, rather than with parent ibogaine. Therefore, after (prolonged) ibogaine ingestion, clinicians should beware of long-term effects due to its metabolite.
Henstra, M., Wong, L., Chahbouni, A., Swart, N., Allaart, C., & Sombogaard, F. (2017). Toxicokinetics of ibogaine and noribogaine in a patient with prolonged multiple cardiac arrhythmias after ingestion of internet purchased ibogaine. Clinical Toxicology55(6), 600-602. 10.1080/15563650.2017.1287372
Link to full text

Toxicokinetics of ibogaine and noribogaine in a patient with prolonged multiple cardiac arrhythmias after ingestion of internet purchased ibogaine Read More »

Potential Antitumor Effect of Harmine in the Treatment of Thyroid Cancer

Abstract

Thyroid cancer is one of the most common types of cancer in endocrine system. In latest studies, harmine has been proved to inhibit the growth of several cancers in vitro and in vivo. In the current study, we evaluated the in vitro and in vivo anticancer efficiency of harmine against thyroid cancer cell line TPC-1. The in vitro cytotoxicity of harmine evaluated by XTT assay indicated that harmine suppressed the proliferation of TPC-1 cells in a dose- and time-dependent manner. Moreover, harmine dose-dependently induced apoptosis of TPC-1 cells through regulating the ratio of Bcl-2/Bax. The colony forming ability of TPC-1 cells was also time-dependently inhibited by harmine. The inhibitory effects of harmine on migration and invasion of TPC-1 cells were studied by wound scratching and Transwell assays. In vivo evaluation showed that harmine effectively inhibited the growth of thyroid cancer in a dose-dependent manner in nude mice. Therefore, harmine might be a promising herbal medicine in the therapy of thyroid cancer and further efforts are needed to explore this therapeutic strategy.

Ruan, S., Jia, F., & Li, J. (2017). Potential Antitumor Effect of Harmine in the Treatment of Thyroid Cancer. Evidence-Based Complementary and Alternative Medicine, 2017. 10.1155/2017/9402615
Link to full text

Potential Antitumor Effect of Harmine in the Treatment of Thyroid Cancer Read More »

Psychedelics in Palliative Care: Clinical and Ethical Considerations - October 27th