OPEN Foundation

Y. Wang

Anticancer activities of harmine by inducing a pro-death autophagy and apoptosis in human gastric cancer cells

Abstract

BACKGROUND:
Harmine, a β-carboline alkaloid from Peganum harmala, has multiple anti-tumor activities, especially for its folk therapy for digestive system neoplasm. However, the underlying mechanism of harmine on gastric cancer remains unclear.
PURPOSE:
To illuminate the potential anti-tumor activity and mechanism of harmine against gastric cancer cells.
METHODS/STUDY DESIGNS:
The anti-proliferative activity of harmine in vitro was evaluated by MTT assay. The autophagic activity induced by harmine was assessed using GFP-LC3 transfection. FITC/PI double staining was applied for the apoptosis inspection. The mitochondrial membrane potential was detected by JC-1 fluorescence probe. The potential mechanisms for proteins level in autophagy and apoptosis were analyzed by Western blot.
RESULTS:
Harmine exhibited potent effects on both autophagy and apoptosis. Treatment with harmine could enhance dots of GFP-LC3 in cells. Meanwhile, the process had connection with Beclin-1, LC3-II, and p62 by the inhibition of Akt/mTOR/p70S6K signaling. However, high concentration of harmine led to apoptosis characterized by the propidium/Annexin V-positive cell pollution, cell shrunk and the collapse of mitochondrial membrane potential. The regulation of Bcl-2, Bax and the gathering of cleaved-PARP, cleaved-caspase 3 and cleaved-caspase 9 contributed to the induction of apoptosis. In addition, 10μM LY294002 (a specific inhibitor of PI3K/Akt) combination with 40μM harmine significantly increased the cytotoxicity to the gastric cancer cells and up-regulated both the apoptosis-related protein (cleaved-PARP, cleaved-caspase-3) and autophagy-related protein (Beclin-1, LC3-II, and p62). Adding the inhibitor of autophagy, 3-MA or BafA1, increased the viability of harmine-exposured gastric cancer cells, which confirmed the role of autophagy played in the gastric cancer cell death induced by harmine.
CONCLUSION:
Harmine might be a potent inducer of apoptosis and autophagy, which offered evidences to therapy of harmine in gastric carcinoma in the folk medicine.
Li, C., Wang, Y., Wang, C., Yi, X., Li, M., & He, X. (2017). Anticancer activities of harmine by inducing a pro-death autophagy and apoptosis in human gastric cancer cells. Phytomedicine28, 10-18. 10.1016/j.phymed.2017.02.008
Link to full text

Composition, Standardization and Chemical Profiling of Banisteriopsis caapi, a Plant for the Treatment of Neurodegenerative Disorders Relevant to Parkinson’s Disease

Abstract

Ethnopharmacological relevance

Banisteriopsis caapi, a woody vine from the Amazonian basin, is popularly known as an ingredient of a sacred drink ayahuasca, widely used throughout the Amazon as a medicinal tea for healing and spiritual exploration. The usefulness of Banisteriopsis caapi has been established for alleviating symptoms of neurological disorders including Parkinson’s disease.

Aim of the study

Primary objective of this study was to develop the process for preparing standardized extracts of Banisteriopsis caapi to achieve high potency for inhibition of human monoamine oxidases (MAO) and antioxidant properties. The aqueous extracts prepared from different parts of the plant collected from different geographical locations and seasons were analyzed by HPLC for principal bioactive markers. The extracts were simultaneously tested in vitro for inhibition of human MAOs and antioxidant activity for analysis of correlation between phytochemical composition of the extracts and bioactivities.

Materials and methods

Reversed-phase HPLC with photodiode array detection was employed to profile the alkaloidal and non-alkaloidal components of the aqueous extract of Banisteriopsis caapi. The Banisteriopsis caapi extracts and standardized compositions were tested in vitro for inhibition of recombinant preparations of human MAO-A and MAO-B. In vitro cell-based assays were employed for evaluation of antioxidant property and mammalian cell cytotoxicity of these preparations.

Results

Among the different aerial parts, leaves, stems/large branches and stem bark of Banisteriopsis caapi, HPLC analysis revealed that most of the dominant chemical and bioactive markers (1, 2, 5, 7–9) were present in high concentrations in dried bark of large branch. A library of HPLC chromatograms has also been generated as a tool for fingerprinting and authentication of the studied Banisteriopsis caapi species. The correlation between potency of MAO inhibition and antioxidant activity with the content of the main active constituents of the aqueous Banisteriopsis caapi extracts and standardized compositions was established. Phytochemical analysis of regular/commercial Banisteriopsis caapi dried stems, obtained from different sources, showed a similar qualitative HPLC profile, but relatively low content of dominant markers 1, 2, 7, and 9, which led to decreased MAO inhibitory and antioxidant potency compared to Banisteriopsis caapi Da Vine.

Conclusion

The ethnopharmacological use of bark of matured stem/large branch of Banisteriopsis caapi as well as whole matured stem is supported by the results obtained in this investigation. Among various constituents of Banisteriopsis caapi, harmine (7), harmaline (6) and tetrahydroharmine (5) are responsible for MAO-A inhibition, while two major proanthocyanidines, epicatechin (8) and procyanidine B2 (9) produce antioxidant effects. The compounds 1–9 can serve as reliable markers for identification and standardization of Banisteriopsis caapi aerial parts, collected in different seasons and/or from different geographical regions.

Wang, Y. H., Samoylenko, V., Tekwani, B. L., Khan, I. A., Miller, L. S., Chaurasiya, N. D., … & Muhammad, I. (2010). Composition, standardization and chemical profiling of Banisteriopsis caapi, a plant for the treatment of neurodegenerative disorders relevant to Parkinson’s disease. Journal of ethnopharmacology, 128(3), 662-671. http://dx.doi.org/10.1016/j.jep.2010.02.013
Link to full text

Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson's disease

Abstract

Aim of the study: Parkinson’s disease is a neurological disorder mostly effecting the elder population of the world. Currently there is no definitive treatment or cure for this disease. Therefore, in this study the composition and constituents of the aqueous extract of B. caapi for monoamine oxidases (MAO) inhibitory and antioxidant activities were assessed, which are relevant to the prevention of neurological disorders, including Parkinsonism.

Materials and methods: The aqueous extract of B. caapi stems was standardized and then fractionated using reversed-phase (RP) chromatography. Pure compounds were isolated either by reversed-phase (RP) chromatography or centrifugal preparative TLC, using a Chromatotron®. Structure elucidation was carried out by 1D and 2D NMR, Mass, IR and Circular Dichroism spectroscopy and chemical derivatization. Chemical profiling of the extract was carried out with RP-HPLC. The inhibitory activity of MAO-A, MAO-B, acetylcholinesterase, butyrylcholinesterase and catechol-O-methyl transferase enzymes, as well as antioxidant and cytotoxic activities of both B. caapi extract and isolated compounds were evaluated.

Results: An examination of the aqueous extracts of B. caapi cultivar Da Vine yielded two new alkaloidal glycosides, named banistenoside A (1) and banistenoside B (2), containing “azepino[fusion_builder_container hundred_percent=”yes” overflow=”visible”][fusion_builder_row][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”][1,2-a]tetrahydro-β-carboline” unique carbon framework. One additional new natural tetrahydronorharmine (4), four known β-carbolines harmol (3), tetrahydroharmine (5), harmaline (6) and harmine (7), two known proanthocyanidines (−)-epicatechin (8) and (−)-procyanidin B2 (9), and a new disaccharide β-D-fructofuranosyl-(2→5)-fructopyranose (14) together with known sacharose (15) and β-D-glucose (16) were also isolated. In addition, the acetates of 1, 2, 8, 9, 14 and 15 (compounds 1013, 17, 18) were also prepared. Harmaline (6) and harmine (7) showed potent in vitro inhibitory activity against recombinant human brain monoamine oxidase (MAO) -A and -B enzymes (IC50 2.5 and 2.0 nM, and 25 and 20 µM, respectively), and (−)-epicatechin (8) and (−)-procyanidin B2 (9) showed potent antioxidant and moderate MAO-B inhibitory activities (IC50 <0.13 and 0.57 µg/mL, and 65 and 35 µM). HPLC analysis revealed that most of the dominant chemical and bioactive markers (1, 2, 5, 79) were present in high concentrations in dried bark of large branch. Analysis of regular/commercial B. caapi dried stems showed a similar qualitative HPLC pattern, but relatively low content of dominant markers 1, 2, 7, and 9, which led to decreased MAO inhibitory and antioxidant potency.

Conclusion: Collectively, these results give additional basis to the existing claim of B. caapi stem extract for the treatment of Parkinsonism, including other neurodegenerative disorders.

Samoylenko, V., Rahman, M. M., Tekwani, B. L., Tripathi, L. M., Wang, Y. H., Khan, S. I., … & Muhammad, I. (2010). Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson’s disease. Journal of ethnopharmacology, 127(2), 357-367. http://dx.doi.org/10.1016%2Fj.jep.2009.10.030

Link to full text

[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

30 April - Q&A with Rick Strassman

X