OPEN Foundation

Cacti / Mescaline

Effects of Schedule I drug laws on neuroscience research and treatment innovation

Abstract

Many psychoactive drugs are used recreationally, particularly by young people. This use and its perceived dangers have led to many different classes of drugs being banned under national laws and international conventions. Indeed, the possession of cannabis, 3,4‑methylenedioxy‑N‑methylamphetamine (MDMA; also known as ecstasy) and psychedelics is stringently regulated. An important and unfortunate outcome of the controls placed on these and other psychoactive drugs is that they make research into their mechanisms of action and potential therapeutic uses — for example, in depression and post‑traumatic stress disorder — difficult and in many cases almost impossible.

Nutt, D. J., King, L. A., & Nichols, D. E. (2013). Effects of Schedule I drug laws on neuroscience research and treatment innovation. Nature Reviews Neuroscience, 14, 577-585. http://dx.doi.org/10.1038/nrn3530
Link to full text

Hallucinogen persisting perception disorder: what do we know after 50 years?

Abstract

‘Flashbacks’ following use of hallucinogenic drugs have been reported for decades; they are recognized in DSM-IV as ‘Hallucinogen Persisting Perception Disorder (Flashbacks)’, or HPPD. We located and analyzed 20 quantitative studies between 1955 and 2001 examining this phenomenon. However, many of these studies were performed before operational criteria for HPPD were published in DSM-III-R, so they are difficult to interpret in the light of current diagnostic criteria. Overall, current knowledge of HPPD remains very limited. In particular (1) the term ‘flashbacks’ is defined in so many ways that it is essentially valueless; (2) most studies provide too little information to judge how many cases could meet DSM-IV criteria for HPPD; and consequently (3) information about risk factors for HPPD, possible etiologic mechanisms, and potential treatment modalities must be interpreted with great caution. At present, HPPD appears to be a genuine but uncommon disorder, sometimes persisting for months or years after hallucinogen use and causing substantial morbidity. It is reported most commonly after illicit LSD use, but less commonly with LSD administered in research or treatment settings, or with use of other types of hallucinogens. There are case reports, but no randomized controlled trials, of successful treatment with neuroleptics, anticonvulsants, benzodiazepines, and clonidine. Although it may be difficult to collect large samples of HPPD cases, further studies are critically needed to augment the meager data presently available regarding the prevalence, etiology, and treatment of HPPD.

Halpern, J. H., & Harrison, G. P. Jr. (2003). Hallucinogen persisting perception disorder: what do we know after 50 years? Drug and Alcohol Dependence, 69(2), 109-119. http://dx.doi.org/10.1016/S0376-8716(02)00306-X
Link to full text

Role of the 5-HT2A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice

Abstract

The 5-HT2A receptor mediates the effects of serotonergic hallucinogens and may play a role in the pathophysiology of certain psychiatric disorders, including schizophrenia. Given these findings, there is a need for animal models to assess the behavioral effects of 5-HT2A receptor activation. Our previous studies demonstrated that the phenylalkylamine hallucinogen and 5-HT2A/2C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) produces dose-dependent effects on locomotor activity in C57BL/6J mice, increasing activity at low to moderate doses and reducing activity at high doses. DOI did not increase locomotor activity in 5-HT2A knockout mice, indicating the effect is a consequence of 5-HT2A receptor activation. Here, we tested a series of phenylalkylamine hallucinogens in C57BL/6J mice using the Behavioral Pattern Monitor (BPM) to determine whether these compounds increase locomotor activity by activating the 5-HT2A receptor. Low doses of mescaline, 2,5-dimethoxy-4-ethylamphetamine (DOET), 2,5-dimethoxy-4-propylamphetamine (DOPR), 2,4,5-trimethoxyamphetamine (TMA-2), and the conformationally restricted phenethylamine (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine (TCB-2) increased locomotor activity. By contrast, the non-hallucinogenic phenylalkylamine 2,5-dimethoxy-4-tert-butylamphetamine (DOTB) did not alter locomotor activity at any dose tested (0.1–10 mg/kg i.p.). The selective 5-HT2A antagonist M100907 blocked the locomotor hyperactivity induced by mescaline and TCB-2. Similarly, mescaline and TCB-2 did not increase locomotor activity in 5-HT2A knockout mice. These results confirm that phenylalkylamine hallucinogens increase locomotor activity in mice and demonstrate that this effect is mediated by 5-HT2A receptor activation. Thus, locomotor hyperactivity in mice can be used to assess phenylalkylamines for 5-HT2A agonist activity and hallucinogen-like behavioral effects. These studies provide additional support for the link between 5-HT2A activation and hallucinogenesis.

Halberstadt, A. L., Powell, S. B., & Geyer, M. A. (2013). Role of the 5-HT 2A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice. Neuropharmacology, 70, 218-227. 10.1016/j.neuropharm.2013.01.014
Link to full text

Quantitative Analysis of Narrative Reports of Psychedelic Drugs

Abstract

Background

Psychedelic drugs facilitate profound changes in consciousness and have potential to provide insights into the nature of human mental processes and their relation to brain physiology. Yet published scientific literature reflects a very limited understanding of the effects of these drugs, especially for newer synthetic compounds. The number of clinical trials and range of drugs formally studied is dwarfed by the number of written descriptions of the many drugs taken by people. Analysis of these descriptions using machine-learning techniques can provide a framework for learning about these drug use experiences.

Methods

We collected 1000 reports of 10 drugs from the drug information website Erowid.org and formed a term-document frequency matrix. Using variable selection and a random-forest classifier, we identified a subset of words that differentiated between drugs.

Results

A random forest using a subset of 110 predictor variables classified with accuracy comparable to a random forest using the full set of 3934 predictors. Our estimated accuracy was 51.1%, which compares favorably to the 10% expected from chance. Reports of MDMA had the highest accuracy at 86.9%; those describing DPT had the lowest at 20.1%. Hierarchical clustering suggested similarities between certain drugs, such as DMT and Salvia divinorum.

Conclusion

Machine-learning techniques can reveal consistencies in descriptions of drug use experiences that vary by drug class. This may be useful for developing hypotheses about the pharmacology and toxicity of new and poorly characterized drugs.

Coyle, J. R., Presti, D. E., Baggott, M. J. (2012). Quantitative Analysis of Narrative Reports of Psychedelic Drugs.
Link to full text

In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin 2A Receptor Binding in MDMA and Hallucinogen Users

Abstract

Context:
Both hallucinogens and 3,4-methylenedioxy-methamphetamine (MDMA or “ecstasy”) have direct agonistic effects on postsynaptic serotonin 2A receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.

Objective:
To assess the differential effects of MDMA and hallucinogen use on cerebral serotonin transporter (SERT) and serotonin2Areceptor binding.

Design:
A positron emission tomography study of 24 young adult drug users and 21 nonusing control partici-pants performed with carbon 11 (11C)–labeled 3-amino-4-[2-[(di(methyl)amino)methyl]phenyl]sulfanylbenzo-nitrile (DASB) and fluorine 18 (18F)–labeled altanserin, respectively. Scans were performed in the user group after a minimum drug abstinence period of 11 days, and the group was subdivided into hallucinogen-preferring users (n = 10) and MDMA-preferring users (n = 14).

Participants:
Twenty-four young adult users of MDMA and/or hallucinogenic drugs and 21 nonusing controls.

Main Outcome Measures:
In vivo cerebral SERT and serotonin 2A receptor binding.

Results:
Compared with nonusers, MDMA-preferring users showed significant decreases in SERT nondisplaceable binding potential (neocortex, −56%; pallidostriatum, −19%; and amygdala, −32%); no significant changes were seen in hallucinogen-preferring users. Both cortical and pallidostriatal SERT nondisplaceable binding potential was negatively correlated with the number of life-time MDMA exposures, and the time of abstinence from MDMA was positively correlated with subcortical, but not cortical, SERT binding. A small decrease in neocortical serotonin 2A receptor binding in the serotonin 2A receptor agonist users (both user groups) was also detected.

Conclusions
We found evidence that MDMA but not hallucinogen use is associated with changes in the cerebral presynaptic serotonergic transmitter system. Because hallucinogenic drugs primarily have serotonin 2A receptor agonistic actions, we conclude that the negative association between MDMA use and cerebral SERT binding is mediated through a direct presynaptic MDMA effect rather than by the serotonin 2A agonistic effects of MDMA. Our cross-sectional data suggest that subcortical, but not cortical, recovery of SERT binding might take place after several months of MDMA abstinence.

Erritzoe, D., Frokjaer, V. G., Holst, K. K., Christoffersen, M., Johansen, S. S., Svarer, C., … Knudsen, G. M. (2011). In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin 2A Receptor Binding in 3,4-Methylenedioxymethamphetamine (MDMA or “Ecstasy”) and Hallucinogen Users. Archives of General Psychiatry, 68(6), 562-576. http://dx.doi.org/10.1001/archgenpsychiatry.2011.56
Link to full text

Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens

Abstract

Serotonergic hallucinogens produce profound changes in perception, mood, and cognition. These drugs include phenylalkylamines such as mescaline and 2,5-dimethoxy-4-methylamphetamine (DOM), and indoleamines such as (+)-lysergic acid diethylamide (LSD) and psilocybin. Despite their differences in chemical structure, the two classes of hallucinogens produce remarkably similar subjective effects in humans, and induce cross-tolerance. The phenylalkylamine hallucinogens are selective 5-HT(2) receptor agonists, whereas the indoleamines are relatively non-selective for serotonin (5-HT) receptors. There is extensive evidence, from both animal and human studies, that the characteristic effects of hallucinogens are mediated by interactions with the 5-HT(2A) receptor. Nevertheless, there is also evidence that interactions with other receptor sites contribute to the psychopharmacological and behavioral effects of the indoleamine hallucinogens. This article reviews the evidence demonstrating that the effects of indoleamine hallucinogens in a variety of animal behavioral paradigms are mediated by both 5-HT(2) and non-5-HT(2) receptors.

Halberstadt, A. L., & Geyer, M.A. (2011). Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 61(3), 364-381. http://dx.doi.org/10.1016/j.neuropharm.2011.01.017
Link to full text

The neurobiology of psychedelic drugs: implications for the treatment of mood disorders

Abstract

After a pause of nearly 40 years in research into the effects of psychedelic drugs, recent advances in our understanding of the neurobiology of psychedelics, such as lysergic acid diethylamide (LSD), psilocybin and ketamine have led to renewed interest in the clinical potential of psychedelics in the treatment of various psychiatric disorders. Recent behavioural and neuroimaging data show that psychedelics modulate neural circuits that have been implicated in mood and affective disorders, and can reduce the clinical symptoms of these disorders. These findings raise the possibility that research into psychedelics might identify novel therapeutic mechanisms and approaches that are based on glutamate-driven neuroplasticity.

Vollenweider, F. X., & Kometer, M. (2010). The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nature Reviews Neuroscience, 11, 642-651. http://dx.doi.org/10.1038/nrn2884
Link to full text

The persistence of the subjective in neuropsychopharmacology: observations of contemporary hallucinogen research

Abstract

The elimination of subjectivity through brain research and the replacement of so-called ‘folk psychology’ by a neuroscientifically enlightened worldview and self-conception has been both hoped for and feared. But this cultural revolution is still pending. Based on nine months of fieldwork on the revival of hallucinogen research since the ‘Decade of the Brain,’ this paper examines how subjective experience appears as epistemic object and practical problem in a psychopharmacological laboratory. In the quest for neural correlates of (drug-induced altered states of) consciousness, introspective accounts of test subjects play a crucial role in neuroimaging studies. Firsthand knowledge of the drugs’ flamboyant effects provides researchers with a personal knowledge not communicated in scientific publications, but key to the conduct of their experiments. In many cases, the ‘psychedelic experience’ draws scientists into the field and continues to inspire their self-image and way of life. By exploring these domains the paper points to a persistence of the subjective in contemporary neuropsychopharmacology.

Langlitz, N. (2010). The persistence of the subjective in neuropsychopharmacology: observations of contemporary hallucinogen research. History of Human Sciences, 23(1), 37-57. http://dx.doi.org/10.1177/0952695109352413
Link to full text

Psychedelics and the Human Receptorome

Abstract

We currently understand the mental effects of psychedelics to be caused by agonism or partial agonism of 5-HT2A (and possibly 5-HT2C) receptors, and we understand that psychedelic drugs, especially phenylalkylamines, are fairly selective for these two receptors. This manuscript is a reference work on the receptor affinity pharmacology of psychedelic drugs. New data is presented on the affinity of twenty-five psychedelic drugs at fifty-one receptors, transporters, and ion channels, assayed by the National Institute of Mental Health – Psychoactive Drug Screening Program (NIMH-PDSP). In addition, comparable data gathered from the literature on ten additional drugs is also presented (mostly assayed by the NIMH-PDSP). A new method is introduced for normalizing affinity (Ki) data that factors out potency so that the multi-receptor affinity profiles of different drugs can be directly compared and contrasted. The method is then used to compare the thirty-five drugs in graphical and tabular form. It is shown that psychedelic drugs, especially phenylalkylamines, are not as selective as generally believed, interacting with forty-two of forty-nine broadly assayed sites. The thirty-five drugs of the study have very diverse patterns of interaction with different classes of receptors, emphasizing eighteen different receptors. This diversity of receptor interaction may underlie the qualitative diversity of these drugs. It should be possible to use this diverse set of drugs as probes into the roles played by the various receptor systems in the human mind.

Ray, T. S. (2010). Psychedelics and the Human Receptorome. PLoS ONE, 5(2). http://dx.doi.org/10.1371/journal.pone.0009019
Link to full text

Unauthorized Research on Cluster Headache

Perhaps the greatest triumph of unauthorized research on visionary plants and drugs to date is the discovery that small doses of LSD, psilocybin, and LSA (lysergic acid amide) are more effective than any conventional medication in treating the dismal disorder, cluster headache. Five years ago, no one other than cluster headache patients or neurologists had ever heard of cluster headache. Now, treatment of cluster headache is routinely listed among potential therapeutic uses for psychedelics, and has even penetrated popular culture to the point that the character Gregory House, M.D. has used a psychedelic drug to treat headache on the TV show House not once, but twice (Kaplow 2006; Dick 2007)!

The first mention of therapeutic effect from a psychedelic on headache comes from Drs. D. Webster Prentiss and Francis P. Morgan, professors of medicine and pharmacology at Columbian University (now George Washington University), who began to conduct animal and human experiments with peyote in 1894 in order to determine whether or not it had any valuable medicinal properties. Two years later, their report concluded: “The conditions in which it seems probable that the use of mescal buttons will produce beneficial results are the following: In general ‘nervousness,’ nervous headache, nervous irritative cough… [fusion_builder_container hundred_percent=”yes” overflow=”visible”][fusion_builder_row][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”][etc.].” In their account are a number of cases, including #5: “The same gentleman reports that his wife formerly used to take the tincture [anhalonium 1] for nervous headaches and that it always relieved her. She has them so seldom now that she does not use it” (Prentiss & Morgan 1896).

Sewell, R. A. (2008). Unauthorized Research on Cluster Headache. The Entheogen Review, 16(4), 117-125.
Link to full text[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

7 May - Psychedelics, Nature & Mental Health with Sam Gandy

X