OPEN Foundation

V. Dakic

Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT

Abstract

Dimethyltryptamines are entheogenic serotonin-like molecules present in traditional Amerindian medicine recently associated with cognitive gains, antidepressant effects, and changes in brain areas related to attention. Legal restrictions and the lack of adequate experimental models have limited the understanding of how such substances impact human brain metabolism. Here we used shotgun mass spectrometry to explore proteomic differences induced by 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) on human cerebral organoids. Out of the 6,728 identified proteins, 934 were found differentially expressed in 5-MeO-DMT-treated cerebral organoids. In silico analysis reinforced previously reported anti-inflammatory actions of 5-MeO-DMT and revealed modulatory effects on proteins associated with long-term potentiation, the formation of dendritic spines, including those involved in cellular protrusion formation, microtubule dynamics, and cytoskeletal reorganization. Our data offer the first insight about molecular alterations caused by 5-MeO-DMT in human cerebral organoids.
Dakic, V., Nascimento, J. M., Sartore, R. C., de Moraes Maciel, R., Araujo, D. B., Ribeiro, S., … & Rehen, S. K. (2017). Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Scientific Reports7(1), 12863. 10.1038/s41598-017-12779-5
Link to full text

Short term changes in the proteome of human cerebral organoids induced by 5-methoxy-N,N-dimethyltryptamine

Abstract

Dimethyltryptamines are hallucinogenic serotonin-like molecules present in traditional Amerindian medicine (e.g. Ayahuasca, Virola) recently associated with cognitive gains, antidepressant effects and changes in brain areas related to attention, self-referential thought, and internal mentation. Historical and technical restrictions impaired understanding how such substances impact human brain metabolism. Here we used shotgun mass spectrometry to explore proteomic differences induced by dimethyltryptamine (5-methoxy-N,N-dimethyltryptamine, 5-MeO-DMT) on human cerebral organoids. Out of the 6,728 identified proteins, 934 were found differentially expressed in 5-MeO-DMT-treated cerebral organoids. In silico systems biology analyses support 5-MeO-DMT’s anti-inflammatory effects and reveal a modulation of proteins associated with the formation of dendritic spines, including proteins involved in cellular protrusion formation, microtubule dynamics and cytoskeletal reorganization. Proteins involved in long-term potentiation were modulated in a complex manner, with significant increases in the levels of NMDAR, CaMKII and CREB, but a reduction of PKA and PKC levels. These results offer possible mechanistic insights into the neuropsychological changes caused by the ingestion of substances rich in dimethyltryptamines.

Dakic, V., Nascimento, J. M., Sartore, R. C., de Moraes Maciel, R., de Araujo, D. B., Ribeiro, S., … & Rehen, S. K. (2017). Short term changes in the proteome of human cerebral organoids induced by 5-methoxy-N, N-dimethyltryptamine. bioRxiv, 108159.
Link to full text

Harmine stimulates proliferation of human neural progenitors

Abstract

Harmine is the β-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive) derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 71.5%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A), which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY), and an irreversible selective inhibitor of monoamine oxidase (MAO) but not DYRK1A (pargyline). INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of DYRK1A is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Our findings show that harmine enhances proliferation of hNPCs and suggest that inhibition of DYRK1A may explain its effects upon proliferation in vitro and antidepressant effects in vivo.

Dakic, V., de Moraes Maciel, R., Drummond, H., Nascimento, J. M., Trindade, P., & Rehen, S. K. (2016). Harmine stimulates proliferation of human neural progenitors. PeerJ, 4, e2727. 10.7717/peerj.2727
Link to full text

Harmine stimulates neurogenesis of human neural cells in vitro

Abstract

Harmine is a β-carboline alkaloid present at highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive) derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 57%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A), which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY) and an irreversible selective inhibitor of monoamine oxidase (MAO) but not DYRK1A (pargyline). INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of Dyrk1a is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Harmine also increased dendritic arborization, including total neurite length, number of segments, extremities and nodes in MAP2 positive neurons. Our findings show that harmine enhances neurogenesis of hNPCs in vitro, and suggest a biological activity associated with its antidepressant effects in vivo.

Dakic, V., de Moraes Maciel, R., Drummond, H., Nascimento, J. M., Trindade, P., & Rehen, S. K. (2016). Harmine stimulates neurogenesis of human neural cells in vitro (No. e1957v1). PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.1957v1
Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Management of Psychedelic-Related Complications - Online Event - Nov 20th