OPEN Foundation

T. Su

Dose-Related Effects of Adjunctive Ketamine in Taiwanese Patients with Treatment-Resistant Depression

Abstract

The antidepressant effects of ketamine are thought to depend on brain-derived neurotrophic factor (BDNF) genotype and dose. The purpose of this study was to characterize the dose-related antidepressant effects of ketamine in patients with treatment-resistant depression drawn from a Chinese population predominately possessing lower activity BDNF genotypes (Val/Met, Met/Met). We conducted a double-blind, randomized, parallel-group, placebo-controlled trial of a single ketamine infusion (saline, 0.2 mg/kg, 0.5 mg/kg). Patients (N=71; BDNF genotype: Val/Val (N=12, 17%), Val/Met (N=40, 56.3%), and Met/Met (N=19, 26.8%)) received mood ratings before infusion, after infusion, and for the subsequent 14 days. Plasma ketamine levels and BDNF genotypes were assessed. This study found a significant dose-related ketamine effect on scores on the Hamilton Depression Rating Scale (HAMD). The responder analysis (>50% reduction from baseline HAMD on at least 2 days between days 2 and 5) also revealed a significant dose-related effect (saline: 12.5%, 0.2 mg/kg: 39.1%; 0.5 mg/kg: 45.8%). This is the first report to our knowledge to demonstrate the dose-related efficacy of R/S-ketamine for treatment-resistant depression and the first to characterize ketamine effects in a genotyped Chinese population in which most (83%) patients possessed at least one copy of the lower functioning Met allele of the BDNF gene.
Su, T. P., Chen, M. H., Li, C. T., Lin, W. C., Hong, C. J., Gueorguieva, R., … & Krystal, J. H. (2017). Dose-Related Effects of Adjunctive Ketamine in Taiwanese Patients with Treatment-Resistant Depression. Neuropsychopharmacology. 10.1038/npp.2017.94
Link to full text

The effects of low-dose ketamine on the prefrontal cortex and amygdala in treatment-resistant depression: A randomized controlled study

Abstract

Background

Low-dose ketamine has been found to have robust and rapid antidepressant effects. A hypoactive prefrontal cortex (PFC) and a hyperactive amygdala have been suggested to be associated with treatment-resistant depression (TRD). However, it is unclear whether the rapid antidepressant mechanisms of ketamine on TRD involve changes in glutamatergic neurotransmission in the PFC and the amygdala.
Methods

A group of 48 TRD patients were recruited and equally randomized into three groups (A: 0.5 kg/mg-ketamine; B: 0.2 kg/mg-ketamine; and C: normal saline [fusion_builder_container hundred_percent=”yes” overflow=”visible”][fusion_builder_row][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”][NS]). Standardized uptake values (SUV) of glucose metabolism measured by 18F-FDG positron-emission-tomography before and immediately after a 40-min ketamine or NS infusion were used for subsequent region-of-interest (ROI) analyses (a priori regions: PFC and amygdala) and whole-brain voxel-wise analyses and were correlated with antidepressant responses, as defined by the Hamilton depression rating scale score. The 18F-FDG signals were used as a proxy measure of glutamate neurotransmission.
Results

The ROI analysis indicated that Group A and Group B, but not Group C, had increases in the SUV of the PFC (group-by-time interaction: F = 7.373, P = 0.002), whereas decreases in the SUV of the amygdala were observed in all three groups (main effect of time, P  < 0.001). The voxel-wise analysis further confirmed a significant group effect on the PFC (corrected for family-wise errors, P  < 0.05; post hoc analysis: Group A<Group C, Group B<Group C). The SUV differences in the PFC predicted the antidepressant responses at 40 and 240 min post-treatment. The PFC changes did not differ between those with and without side effects.

Conclusion

Ketamine’s rapid antidepressant effects involved the facilitation of glutamatergic neurotransmission in the PFC.

Li, C. T., Chen, M. H., Lin, W. C., Hong, C. J., Yang, B. H., Liu, R. S., … & Su, T. P. (2016). The effects of low‐dose ketamine on the prefrontal cortex and amygdala in treatment‐resistant depression: A randomized controlled study. Human Brain Mapping. http://dx.doi.org/10.1002/hbm.23085
Link to full text

[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

When the Endogenous Hallucinogenic Trace Amine N,N-Dimethyltryptamine Meets the Sigma-1 Receptor

Abstract

N,N-dimethyltryptamine (DMT) is a hallucinogen found endogenously in human brain that is commonly recognized to target the 5-hydroxytryptamine 2A receptor or the trace amine–associated receptor to exert its psychedelic effect. DMT has been recently shown to bind sigma-1 receptors, which are ligand-regulated molecular chaperones whose function includes inhibiting various voltage-sensitive ion channels. Thus, it is possible that the psychedelic action of DMT might be mediated in part through sigma-1 receptors. Here, we present a hypothetical signaling scheme that might be triggered by the binding of DMT to sigma-1 receptors.

Su, T., Hayashi, T., & Vaupel, D. B. (2009). When the Endogenous Hallucinogenic Trace Amine N,N-Dimethyltryptamine Meets the Sigma-1 Receptor. Science Signaling, 2(61). http://dx.doi.org/10.1126/scisignal.261pe12
Link to full text

2 April - New Insights on Addiction & Psychedelic Healing Followed by a Live Q&A!

X