OPEN Foundation

R. Kraehenmann

Psilocybin modulates functional connectivity of the amygdala during emotional face discrimination

Abstract

Recent studies suggest that the antidepressant effects of the psychedelic 5-HT2A receptor agonist psilocybin are mediated through its modulatory properties on prefrontal and limbic brain regions including the amygdala. To further investigate the effects of psilocybin on emotion processing networks, we studied for the first-time psilocybin’s acute effects on amygdala seed-to-voxel connectivity in an event-related face discrimination task in 18 healthy volunteers who received psilocybin and placebo in a double-blind balanced cross-over design. The amygdala has been implicated as a salience detector especially involved in the immediate response to emotional face content. We used beta-series amygdala seed-to-voxel connectivity during an emotional face discrimination task to elucidate the connectivity pattern of the amygdala over the entire brain.

When we compared psilocybin to placebo, an increase in reaction time for all three categories of affective stimuli was found. Psilocybin decreased the connectivity between amygdala and the striatum during angry face discrimination. During happy face discrimination, the connectivity between the amygdala and the frontal pole was decreased. No effect was seen during discrimination of fearful faces. Thus, we show psilocybin’s effect as a modulator of major connectivity hubs of the amygdala. Psilocybin decreases the connectivity between important nodes linked to emotion processing like the frontal pole or the striatum. Future studies are needed to clarify whether connectivity changes predict therapeutic effects in psychiatric patients.

Grimm, O., Kraehenmann, R., Preller, K. H., Seifritz, E., & Vollenweider, F. X. (2018). Psilocybin modulates functional connectivity of the amygdala during emotional face discrimination. European Neuropsychopharmacology. 10.1016/j.euroneuro.2018.03.016
Link to full text

LSD Increases Primary Process Thinking via Serotonin 2A Receptor Activation

Abstract

Rationale: Stimulation of serotonin 2A (5-HT2A) receptors by lysergic acid diethylamide (LSD) and related compounds such as psilocybin has previously been shown to increase primary process thinking – an ontologically and evolutionary early, implicit, associative, and automatic mode of thinking which is typically occurring during altered states of consciousness such as dreaming. However, it is still largely unknown whether LSD induces primary process thinking under placebo-controlled, standardized experimental conditions and whether these effects are related to subjective experience and 5-HT2A receptor activation. Therefore, this study aimed to test the hypotheses that LSD increases primary process thinking and that primary process thinking depends on 5-HT2A receptor activation and is related to subjective drug effects.

Methods: Twenty-five healthy subjects performed an audio-recorded mental imagery task 7 h after drug administration during three drug conditions: placebo, LSD (100 mcg orally) and LSD together with the 5-HT2A receptor antagonist ketanserin (40 mg orally). The main outcome variable in this study was primary index (PI), a formal measure of primary process thinking in the imagery reports. State of consciousness was evaluated using the Altered State of Consciousness (5D-ASC) rating scale.

Results: LSD, compared with placebo, significantly increased primary index (p < 0.001, Bonferroni-corrected). The LSD-induced increase in primary index was positively correlated with LSD-induced disembodiment (p < 0.05, Bonferroni-corrected), and blissful state (p < 0.05, Bonferroni-corrected) on the 5D-ASC. Both LSD-induced increases in primary index and changes in state of consciousness were fully blocked by ketanserin.

Conclusion: LSD induces primary process thinking via activation of 5-HT2A receptors and in relation to disembodiment and blissful state. Primary process thinking appears to crucially organize inner experiences during both dreams and psychedelic states of consciousness.

Kraehenmann, R., Pokorny, D., Aicher, H., Preller, K. H., Pokorny, T., Bosch, O. G., … & Vollenweider, F. X. (2017). LSD Increases Primary Process Thinking via Serotonin 2A Receptor Activation. Frontiers in Pharmacology8, 814. 10.3389/fphar.2017.00814
Link to full text

Two dose investigation of the 5-HT-agonist psilocybin on relative and global cerebral blood flow

Abstract

Psilocybin, the active compound in psychedelic mushrooms, is an agonist of various serotonin receptors. Seminal psilocybin positron emission tomography (PET) research suggested regional increases in glucose metabolism in frontal cortex (hyperfrontality). However, a recent arterial spin labeling (ASL) study suggests psilocybin may lead to hypo-perfusion in various brain regions. In this placebo-controlled, double-blind study we used pseudo-continuous ASL (pCASL) to measure perfusion changes, with and without adjustment for global brain perfusion, after two doses of oral psilocybin (low dose: 0.160 mg/kg; high dose: 0.215 mg/kg) in two groups of healthy controls (n = 29 in both groups, total N = 58) during rest. We controlled for sex and age and used family-wise error corrected p values in all neuroimaging analyses. Both dose groups reported profound subjective drug effects as measured by the Altered States of Consciousness Rating Scale (5D-ASC) with the high dose inducing significantly larger effects in four out of the 11 scales. After adjusting for global brain perfusion, psilocybin increased relative perfusion in distinct right hemispheric frontal and temporal regions and bilaterally in the anterior insula and decreased perfusion in left hemispheric parietal and temporal cortices and left subcortical regions. Whereas, psilocybin significantly reduced absolute perfusion in frontal, temporal, parietal, and occipital lobes, and bilateral amygdalae, anterior cingulate, insula, striatal regions, and hippocampi. Our analyses demonstrate consistency with both the hyperfrontal hypothesis of psilocybin and the more recent study demonstrating decreased perfusion, depending on analysis method. Importantly, our data illustrate that relative changes in perfusion should be understood and interpreted in relation to absolute signal variations.
Lewis, C. R., Preller, K. H., Kraehenmann, R., Michels, L., Stämpfli, P., & Vollenweider, F. X. (2017). Two dose investigation of the 5-HT-agonist psilocybin on relative and global cerebral blood flow. NeuroImage. 10.1016/j.neuroimage.2017.07.020
Link to full text

Dreams and psychedelics: neurophenomenological comparison and therapeutic implications

Abstract

A resurgence of neurobiological and clinical research is currently underway into the therapeutic potential of serotonergic or ‘classical’ psychedelics, such as the prototypical psychedelic drug lysergic acid diethylamide (LSD), psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine), and ayahuasca – a betacarboline- and dimethyltryptamine (DMT)-containing Amazonian beverage. However, the mechanisms of therapeutic action are still not fully explained. Given that an altered state of consciousness is a common denominator that characterizes all classical psychedelics and given that both rapid eye movement sleep (REMS) and psychedelics modulate perception, mental imagery, emotion activation, fear memory extinction, and sense of self and body, in the present article, these two states of consciousness are systematically compared, and therapeutically relevant conclusions are drawn based on available evidence.
Kraehenmann, R. (2017). Dreams and psychedelics: neurophenomenological comparison and therapeutic implications. Current neuropharmacology. 10.2174/1573413713666170619092629
Link to full text

Dreamlike effects of LSD on waking imagery in humans depend on serotonin 2A receptor activation

Abstract

RATIONALE:
Accumulating evidence indicates that the mixed serotonin and dopamine receptor agonist lysergic acid diethylamide (LSD) induces an altered state of consciousness that resembles dreaming.
OBJECTIVES:
This study aimed to test the hypotheses that LSD produces dreamlike waking imagery and that this imagery depends on 5-HT2A receptor activation and is related to subjective drug effects.
METHODS:
Twenty-five healthy subjects performed an audiorecorded guided mental imagery task 7 h after drug administration during three drug conditions: placebo, LSD (100 mcg orally) and LSD together with the 5-HT2A receptor antagonist ketanserin (40 mg orally). Cognitive bizarreness of guided mental imagery reports was quantified as a standardised formal measure of dream mentation. State of consciousness was evaluated using the Altered State of Consciousness (5D-ASC) questionnaire.
RESULTS:
LSD, compared with placebo, significantly increased cognitive bizarreness (p < 0.001). The LSD-induced increase in cognitive bizarreness was positively correlated with the LSD-induced loss of self-boundaries and cognitive control (p < 0.05). Both LSD-induced increases in cognitive bizarreness and changes in state of consciousness were fully blocked by ketanserin.
CONCLUSIONS:
LSD produced mental imagery similar to dreaming, primarily via activation of the 5-HT2A receptor and in relation to loss of self-boundaries and cognitive control. Future psychopharmacological studies should assess the differential contribution of the D2/D1 and 5-HT1A receptors to cognitive bizarreness.
Kraehenmann, R., Pokorny, D., Vollenweider, L., Preller, K. H., Pokorny, T., Seifritz, E., & Vollenweider, F. X. (2017). Dreamlike effects of LSD on waking imagery in humans depend on serotonin 2A receptor activation. Psychopharmacology, 1-16. 10.1007/s00213-017-4610-0
Link to full text

The Fabric of Meaning and Subjective Effects in LSD-Induced States Depend on Serotonin 2A Receptor Activation

Abstract

A core aspect of the human self is the attribution of personal relevance to everyday stimuli enabling us to experience our environment as meaningful [fusion_builder_container hundred_percent=”yes” overflow=”visible”][fusion_builder_row][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”][1]. However, abnormalities in the attribution of personal relevance to sensory experiences are also critical features of many psychiatric disorders [2 and 3]. Despite their clinical relevance, the neurochemical and anatomical substrates enabling meaningful experiences are largely unknown. Therefore, we investigated the neuropharmacology of personal relevance processing in humans by combining fMRI and the administration of the mixed serotonin (5-HT) and dopamine receptor (R) agonist lysergic acid diethylamide (LSD), well known to alter the subjective meaning of percepts, with and without pretreatment with the 5-HT2AR antagonist ketanserin. General subjective LSD effects were fully blocked by ketanserin. In addition, ketanserin inhibited the LSD-induced attribution of personal relevance to previously meaningless stimuli and modulated the processing of meaningful stimuli in cortical midline structures. These findings point to the crucial role of the 5-HT2AR subtype and cortical midline regions in the generation and attribution of personal relevance. Our results thus increase our mechanistic understanding of personal relevance processing and reveal potential targets for the treatment of psychiatric illnesses characterized by alterations in personal relevance attribution.

Preller, K. H., Herdener, M., Pokorny, T., Planzer, A., Kraehenmann, R., Stämpfli, P., … & Vollenweider, F. X. (2017). The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Current Biology, 27(3), 451-457. 10.1016/j.cub.2016.12.030
Link to full text[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Effects of serotonin 2A/1A receptor stimulation on social exclusion processing

Abstract

Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses.

Preller, K. H., Pokorny, T., Hock, A., Kraehenmann, R., Stämpfli, P., Seifritz, E., … & Vollenweider, F. X. (2016). Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proceedings of the National Academy of Sciences, 201524187. http://dx.doi.org/10.1073/pnas.1524187113

Link to full text

Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience

Abstract

The mixed serotonin (5-HT) 1A/2A/2B/2C/6/7 receptor agonist psilocybin dose-dependently induces an altered state of consciousness (ASC) that is characterized by changes in sensory perception, mood, thought, and the sense of self. The psychological effects of psilocybin are primarily mediated by 5-HT2A receptor activation. However, accumulating evidence suggests that 5-HT1A or an interaction between 5-HT1A and 5-HT2A receptors may contribute to the overall effects of psilocybin. Therefore, we used a double-blind, counterbalanced, within-subject design to investigate the modulatory effects of the partial 5-HT1A agonist buspirone (20 mg p.o.) and the non-hallucinogenic 5-HT2A/1A agonist ergotamine (3 mg p.o.) on psilocybin-induced (170 µg/kg p.o.) psychological effects in two groups (n=19, n=17) of healthy human subjects. Psychological effects were assessed using the Altered State of Consciousness (5D-ASC) rating scale. Buspirone significantly reduced the 5D-ASC main scale score for Visionary Restructuralization (VR) (p<0.001), which was mostly driven by a reduction of the VR item cluster scores for elementary and complex visual hallucinations. Further, buspirone also reduced the main scale score for Oceanic Boundlessness including derealisation and depersonalisation phenomena at a trend level (p=0.062), whereas ergotamine did not show any effects on the psilocybin-induced 5D-ASC main scale scores. The present finding demonstrates that buspirone exerts inhibitory effects on psilocybin-induced effects, presumably via 5-HT1A receptor activation, an interaction between 5-HT1A and 5-HT2A receptors, or both. The data suggest that the modulation of 5-HT1A receptor activity may be a useful target in the treatment of visual hallucinations in different psychiatric and neurological diseases.

Pokorny, T., Preller, K. H., Kraehenmann, R., & Vollenweider, F. X. (2016). Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience. European Neuropsychopharmacology. http://dx.doi.org/10.1016/j.euroneuro.2016.01.005
Link to full text

The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity

Abstract

Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin’s effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual–limbic–prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.

Kraehenmann, R., Schmidt, A., Friston, K., Preller, K. H., Seifritz, E., & Vollenweider, F. X. (2015). The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity. NeuroImage: Clinical. https://dx.doi.org/10.1016/j.nicl.2015.08.009
Link to full text

Current knowledge on the neurobiology of classical hallucinogens and their relevance for the treatment of mood and anxiety disorders

Abstract

Hallucinogenic substances have been used for millenia. Still, the scientific investigation into the effects and mechanisms of classical hallucinogens in humans has only commenced with the discovery of LSD by Albert Hofmann in 1943. In the 1960’s, there were more than a thousand clinical studies that reported promising therapeutic effects of LSD and psilocybin in psychiatric patients. Only recently, however, the neuropharmacological and neurobiological underpinnings of hallucinogenic drugs have undergone systematic investigations. Despite having different chemical structures, classical hallucinogens produce striking similar subjective and behavioral effects in both animals and humans. Activation of the serotonin 2A (5-HT2A) receptor is a core feature in hallucinogenic pharmacology. Recent neuroimaging studies have begun to elucidate the brain mechanisms underlying hallucinogen-induced changes of thought, perception, and mood. Among the many networks involved in hallucinogen-related states of consciousness, the prefrontal cortex and the limbic regions appear to be especially relevant to the putative antidepressant effects of classical hallucinogens. Furthermore, hallucinogens may foster neuroplastic adaptations within cortico-subcortical brain networks. This appears to be a promising mechanism with regard to future clinical studies into the effects of classical hallucinogens in depression and anxiety.

Kraehenmann, R. (2015). The Effect of Serotonin Receptor Manipulation On Brain Networks and Its Impact On Emotion Regulation. European Psychiatry, 30, 21. http://dx.doi.org/10.1016/S0924-9338(15)30016-X
Link to full text

30 April - Q&A with Rick Strassman

X