OPEN Foundation

N. Farber

Prolonged ketamine infusion modulates limbic connectivity and induces sustained remission of treatment-resistant depression

Abstract

Ketamine produces a rapid antidepressant response in over 50% of adults with treatment-resistant depression. A long infusion of ketamine may provide durable remission of depressive symptoms, but the safety, efficacy, and neurobiological correlates are unknown. In this open-label, proof-of-principle study, adults with treatment-resistant depression (N = 23) underwent a 96-h infusion of intravenous ketamine (0.15 mg/kg/h titrated toward 0.6 mg/kg/h). Clonidine was co-administered to reduce psychotomimetic effects. We measured clinical response for 8 weeks post-infusion. Resting-state functional magnetic resonance imaging was used to assess functional connectivity in patients pre- and 2 weeks post-infusion and in matched non-depressed controls (N = 27). We hypothesized that responders to therapy would demonstrate response-dependent connectivity changes while all subjects would show treatment-dependent connectivity changes. Most participants completed infusion (21/23; mean final dose 0.54 mg/kg/h, SD 0.13). The infusion was well tolerated with minimal cognitive and psychotomimetic side effects. Depressive symptoms were markedly reduced (MADRS 29 ± 4 at baseline to 9 ± 8 one day post-infusion), which was sustained at 2 weeks (13 ± 8) and 8 weeks (15 ± 8). Imaging demonstrated a response-dependent decrease in hyperconnectivity of the subgenual anterior cingulate cortex to the default mode network, and a treatment-dependent decrease in hyperconnectivity within the limbic system (hippocampus, amygdala, medial thalamus, nucleus accumbens). In exploratory analyses, connectivity was increased between the limbic system and frontal areas, and smaller right hippocampus volume at baseline predicted larger MADRS change. A single prolonged infusion of ketamine provides a tolerated, rapid, and sustained response in treatment-resistant depression and normalizes depression-related hyperconnectivity in the limbic system and frontal lobe. ClinicalTrials.gov : Treatment Resistant Depression (Pilot), NCT01179009.

Siegel, J. S., Palanca, B., Ances, B. M., Kharasch, E. D., Schweiger, J. A., Yingling, M. D., Snyder, A. Z., Nicol, G. E., Lenze, E. J., & Farber, N. B. (2021). Prolonged ketamine infusion modulates limbic connectivity and induces sustained remission of treatment-resistant depression. Psychopharmacology, 238(4), 1157–1169. https://doi.org/10.1007/s00213-021-05762-6

Link to full text

Serotonergic Agents That Activate 5HT2A Receptors Prevent NMDA Antagonist Neurotoxicity

Abstract

Phencyclidine, ketamine, and other agents that block NMDA glutamate receptors trigger a schizophrenia-like psychosis in humans and induce pathomorphological changes in cerebrocortical neurons in rat brain. Accumulating evidence suggests that a complex network disturbance involving multiple transmitter receptor systems is responsible for the neuronal injury, and it is proposed that a similar network disturbance is responsible for the psychotomimetic effects of NMDA antagonists, and might also be involved in the pathophysiology of schizophrenia. In the present study we present evidence that serotonergic agents possessing 5HT2A agonist activity prevent NMDA antagonist neurotoxicity in rat brain. It isproposed that 5HT2A agonists may also prevent the psychotomimetic effects of NMDA antagonists. Among the 5HT2A agonists examined and found to be neuroprotective are LSD and related hallucinogens. The apparent contradiction in proposing that these agents might have antipsychotic properties is resolved by evidence linking their hallucinogenic activity to agonist action at 5HT2C receptors, whereas antipsychotic activity would be attributable to agonist action at 5HT2A receptors.

Farber, N. B., Hanslick, J., Kirby, C., McWilliams, L., & Olney, J. W. (1998). Serotonergic Agents That Activate 5HT2A Receptors Prevent NMDA Antagonist Neurotoxicity. Neuropsychopharmacology, 18(1), 57-62. http://dx.doi.org/doi:10.1016/S0893-133X(97)00127-9

Link to full text

30 April - Q&A with Rick Strassman

X