OPEN Foundation

Therapeutic Application

Capturing the different health conditions that PAP may adress

Effectiveness of intravenous ketamine in mood disorder patients with a history of neurostimulation

Abstract

Background: Patients unsuccessfully treated by neurostimulation may represent a highly intractable subgroup of depression. While the efficacy of intravenous (IV) ketamine has been established in patients with treatment-resistant depression (TRD), there is an interest to evaluate its effectiveness in a subpopulation with a history of neurostimulation.

Methods: This retrospective, posthoc analysis compared the effects of four infusions of IV ketamine in 135 (x̄ = 44 ± 15.4 years of age) neurostimulation-naïve patients to 103 (x̄ = 47 ± 13.9 years of age) patients with a history of neurostimulation. The primary outcome evaluated changes in depression severity, measured by the Quick Inventory for Depression Symptomatology-Self Report 16-Item (QIDS-SR16). Secondary outcomes evaluated suicidal ideation (SI), anxiety severity, measured by the Generalized Anxiety Disorder 7-Item (GAD-7), and consummatory anhedonia, measured by the Snaith-Hamilton Pleasure Scale (SHAPS).

Results: Following four infusions, both cohorts reported a significant reduction in QIDS-SR16 Total Score (F (4, 648) = 73.4, P < .001), SI (F (4, 642) = 28.6, P < .001), GAD-7 (F (2, 265) = 53.8, P < .001), and SHAPS (F (2, 302) = 45.9, P < .001). No between-group differences emerged. Overall, the neurostimulation-naïve group had a mean reduction in QIDS-SR16 Total Score of 6.4 (standard deviation [SD] = 5.3), whereas the history of neurostimulation patients reported a 4.3 (SD = 5.3) point reduction.

Conclusion: IV ketamine was effective in reducing symptoms of depression, SI, anxiety, and anhedonia in both cohorts in this large, well-characterized community-based sample of adults with TRD.

Rodrigues, N. B., Siegel, A., Lipsitz, O., Cha, D. S., Gill, H., Nasri, F., Simonson, K., Shekotikhina, M., Lee, Y., Subramaniapillai, M., Kratiuk, K., Lin, K., Ho, R., Mansur, R. B., McIntyre, R. S., & Rosenblat, J. D. (2020). Effectiveness of intravenous ketamine in mood disorder patients with a history of neurostimulation. CNS spectrums, 1–7. Advance online publication. https://doi.org/10.1017/S1092852920002187

Link to full text

Involvement of NMDA receptors containing the GluN2C subunit in the psychotomimetic and antidepressant-like effects of ketamine

Abstract

Acute ketamine administration evokes rapid and sustained antidepressant effects in treatment-resistant patients. However, ketamine also produces transient perceptual disturbances similarly to those evoked by other non-competitive NMDA-R antagonists like phencyclidine (PCP). Although the brain networks involved in both ketamine actions are not fully understood, PCP and ketamine activate thalamo-cortical networks after NMDA-R blockade in GABAergic neurons of the reticular thalamic nucleus (RtN). Given the involvement of thalamo-cortical networks in processing sensory information, these networks may underlie psychotomimetic action. Since the GluN2C subunit is densely expressed in the thalamus, including the RtN, we examined the dependence of psychotomimetic and antidepressant-like actions of ketamine on the presence of GluN2C subunits, using wild-type and GluN2C knockout (GluN2CKO) mice. Likewise, since few studies have investigated ketamine’s effects in females, we used mice of both sexes. GluN2C deletion dramatically reduced stereotyped (circling) behavior induced by ketamine in male and female mice, while the antidepressant-like effect was fully preserved in both genotypes and sexes. Despite ketamine appeared to induce similar effects in both sexes, some neurobiological differences were observed between male and female mice regarding c-fos expression in thalamic nuclei and cerebellum, and glutamate surge in prefrontal cortex. In conclusion, the GluN2C subunit may discriminate between antidepressant-like and psychotomimetic actions of ketamine. Further, the abundant presence of GluN2C subunits in the cerebellum and the improved motor coordination of GluN2CKO mice after ketamine treatment suggest the involvement of cerebellar NMDA-Rs in some behavioral actions of ketamine.

Tarrés-Gatius, M., Miquel-Rio, L., Campa, L., Artigas, F., & Castañé, A. (2020). Involvement of NMDA receptors containing the GluN2C subunit in the psychotomimetic and antidepressant-like effects of ketamine. Translational psychiatry, 10(1), 427. https://doi.org/10.1038/s41398-020-01110-y

Link to full text

A non-hallucinogenic psychedelic analogue with therapeutic potential

Abstract

The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals1. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine-like those of other psychedelic compounds-are long-lasting2, which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling3,4. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog-a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.

Cameron, L. P., Tombari, R. J., Lu, J., Pell, A. J., Hurley, Z. Q., Ehinger, Y., Vargas, M. V., McCarroll, M. N., Taylor, J. C., Myers-Turnbull, D., Liu, T., Yaghoobi, B., Laskowski, L. J., Anderson, E. I., Zhang, G., Viswanathan, J., Brown, B. M., Tjia, M., Dunlap, L. E., Rabow, Z. T., … Olson, D. E. (2021). A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature, 589(7842), 474–479. https://doi.org/10.1038/s41586-020-3008-z

Link to full text

MDMA-facilitated cognitive-behavioural conjoint therapy for posttraumatic stress disorder: an uncontrolled trial

Abstract

Cognitive-behavioural conjoint therapy (CBCT) for PTSD has been shown to improve PTSD, relationship adjustment, and the health and well-being of partners. MDMA (3,4-methylenedioxymethamphetamine) has been used to facilitate an individual therapy for PTSD. This study was an initial test of the safety, tolerability, and efficacy of MDMA-facilitated CBCT. Six couples with varying levels of baseline relationship satisfaction in which one partner was diagnosed with PTSD participated in a condensed version of the 15-session CBCT protocol delivered over 7 weeks. There were two sessions in which both members of the couple were administered MDMA. All couples completed the treatment protocol, and there were no serious adverse events in either partner. There were significant improvements in clinician-assessed, patient-rated, and partner-rated PTSD symptoms (pre- to post-treatment/follow-up effect sizes ranged from d = 1.85-3.59), as well as patient depression, sleep, emotion regulation, and trauma-related beliefs. In addition, there were significant improvements in patient and partner-rated relationship adjustment and happiness (d =.64-2.79). These results are contextualized in relation to prior results from individual MDMA-facilitated psychotherapy and CBCT for PTSD alone. MDMA holds promise as a facilitator of CBCT to achieve more robust and broad effects on individual and relational functioning in those with PTSD and their partners.

Monson, C. M., Wagner, A. C., Mithoefer, A. T., Liebman, R. E., Feduccia, A. A., Jerome, L., Yazar-Klosinski, B., Emerson, A., Doblin, R., & Mithoefer, M. C. (2020). MDMA-facilitated cognitive-behavioural conjoint therapy for posttraumatic stress disorder: an uncontrolled trial. European journal of psychotraumatology, 11(1), 1840123. https://doi.org/10.1080/20008198.2020.1840123

Link to full text

The Ketamine Antidepressant Story: New Insights

Abstract

Ketamine is a versatile agent primarily utilized as a dissociative anesthetic, which acts by blocking the excitatory receptor N-methyl-d-aspartate receptor (NMDA). It functions to inhibit the current of both Na+ and K+ voltage-gated channels, thus preventing serotonin and dopamine reuptake. Studies have indicated that administering a single subanesthetic dose of ketamine relieves depression rapidly and that the effect is sustained. For decades antidepressant agents were based on the monoamine theory. Although ketamine may not be the golden antidepressant, it has opened new avenues toward mechanisms involved in the pathology of treatment-resistant depression and achieving rapid antidepressant effects. Thus, preclinical studies focusing on deciphering the molecular mechanisms involved in the antidepressant action of ketamine will assist in the development of a new antidepressant. This review was conducted to elucidate the emerging pathways that can explain the complex dose-dependent mechanisms achieved by administering ketamine to treat major depressive disorders. Special attention was paid to reviewing the literature on hydroxynorketamines, which are ketamine metabolites that have recently attracted attention in the context of depression.

Alshammari T. K. (2020). The Ketamine Antidepressant Story: New Insights. Molecules (Basel, Switzerland), 25(23), 5777. https://doi.org/10.3390/molecules25235777

Link to full text

Modulation of the functional connectome in major depressive disorder by ketamine therapy

Abstract

Background: Subanesthetic ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depression. How single and repeated ketamine treatment modulates the whole-brain functional connectome to affect clinical outcomes remains uncharacterized.

Methods: Data-driven whole brain functional connectivity (FC) analysis was used to identify the functional connections modified by ketamine treatment in patients with major depressive disorder (MDD). MDD patients (N = 61, mean age = 38, 19 women) completed baseline resting-state (RS) functional magnetic resonance imaging and depression symptom scales. Of these patients, n = 48 and n = 51, completed the same assessments 24 h after receiving one and four 0.5 mg/kg intravenous ketamine infusions. Healthy controls (HC) (n = 40, 24 women) completed baseline assessments with no intervention. Analysis of RS FC addressed effects of diagnosis, time, and remitter status.

Results: Significant differences (p < 0.05, corrected) in RS FC were observed between HC and MDD at baseline in the somatomotor network and between association and default mode networks. These disruptions in FC in MDD patients trended toward control patterns with ketamine treatment. Furthermore, following serial ketamine infusions, significant decreases in FC were observed between the cerebellum and salience network (SN) (p < 0.05, corrected). Patient remitters showed increased FC between the cerebellum and the striatum prior to treatment that decreased following treatment, whereas non-remitters showed the opposite pattern.

Conclusion: Results support that ketamine treatment leads to neurofunctional plasticity between distinct neural networks that are shown as disrupted in MDD patients. Cortico-striatal-cerebellar loops that encompass the SN could be a potential biomarker for ketamine treatment.

Sahib, A. K., Loureiro, J. R., Vasavada, M., Anderson, C., Kubicki, A., Wade, B., Joshi, S. H., Woods, R. P., Congdon, E., Espinoza, R., & Narr, K. L. (2020). Modulation of the functional connectome in major depressive disorder by ketamine therapy. Psychological medicine, 1–10. Advance online publication. https://doi.org/10.1017/S0033291720004560

Link to full text

Does body mass index predict response to intravenous ketamine treatment in adults with major depressive and bipolar disorder? Results from the Canadian Rapid Treatment Center of Excellence

Abstract

Background: Higher body mass index (BMI) has been found to predict greater antidepressant response to intravenous (IV) ketamine treatment. We evaluated the association between BMI and response to repeat-dose IV ketamine in patients with treatment-resistant depression (TRD).

Methods: Adults (N = 230) with TRD received four infusions of IV ketamine at a community-based clinic. Changes in symptoms of depression (ie, Quick Inventory for Depressive Symptomatology-Self-Report 16; QIDS-SR16), suicidal ideation (SI; ie, QIDS-SR16 SI item), anxiety (ie, Generalized Anxiety Disorder-7 Scale), anhedonic severity (ie, Snaith-Hamilton Pleasure Scale), and functioning (ie, Sheehan Disability Scale) following infusions were evaluated. Participants were stratified by BMI as normal (18.0-24.9 kg/m2; n = 72), overweight (25-29.9 kg/m2; n = 76), obese I (30-34.9 kg/m2; n = 47), or obese II (≥35.0 kg/m2; n = 35).

Results: Similar antidepressant effects with repeat-dose ketamine were reported between BMI groups (P = .261). In addition, categorical partial response (P = .149), response (P = .526), and remission (P = .232) rates were similar between the four BMI groups.

Conclusions: The findings are limited by the observational, open-label design of this retrospective analysis. Pretreatment BMI did not predict response to IV ketamine, which was effective regardless of BMI.

Lipsitz, O., McIntyre, R. S., Rodrigues, N. B., Lee, Y., Gill, H., Subramaniapillai, M., Kratiuk, K., Nasri, F., Mansur, R. B., & Rosenblat, J. D. (2020). Does body mass index predict response to intravenous ketamine treatment in adults with major depressive and bipolar disorder? Results from the Canadian Rapid Treatment Center of Excellence. CNS spectrums, 1–9. Advance online publication. https://doi.org/10.1017/S1092852920002102

Link to full text

The Effects of Daytime Psilocybin Administration on Sleep: Implications for Antidepressant Action

Abstract

Serotonergic agonist psilocybin is a psychedelic with antidepressant potential. Sleep may interact with psilocybin’s antidepressant properties like other antidepressant drugs via induction of neuroplasticity. The main aim of the study was to evaluate the effect of psilocybin on sleep architecture on the night after psilocybin administration. Regarding the potential antidepressant properties, we hypothesized that psilocybin, similar to other classical antidepressants, would reduce rapid eye movement (REM) sleep and prolong REM sleep latency. Moreover, we also hypothesized that psilocybin would promote slow-wave activity (SWA) expression in the first sleep cycle, a marker of sleep-related neuroplasticity. Twenty healthy volunteers (10 women, age 28-53) underwent two drug administration sessions, psilocybin or placebo, in a randomized, double-blinded design. Changes in sleep macrostructure, SWA during the first sleep cycle, whole night EEG spectral power across frequencies in non-rapid eye movement (NREM) and REM sleep, and changes in subjective sleep measures were analyzed. The results revealed prolonged REM sleep latency after psilocybin administration and a trend toward a decrease in overall REM sleep duration. No changes in NREM sleep were observed. Psilocybin did not affect EEG power spectra in NREM or REM sleep when examined across the whole night. However, psilocybin suppressed SWA in the first sleep cycle. No evidence was found for sleep-related neuroplasticity, however, a different dosage, timing, effect on homeostatic regulation of sleep, or other mechanisms related to antidepressant effects may play a role. Overall, this study suggests that potential antidepressant properties of psilocybin might be related to changes in sleep.

Dudysová, D., Janků, K., Šmotek, M., Saifutdinova, E., Kopřivová, J., Bušková, J., Mander, B. A., Brunovský, M., Zach, P., Korčák, J., Andrashko, V., Viktorinová, M., Tylš, F., Bravermanová, A., Froese, T., Páleníček, T., & Horáček, J. (2020). The Effects of Daytime Psilocybin Administration on Sleep: Implications for Antidepressant Action. Frontiers in pharmacology, 11, 602590. https://doi.org/10.3389/fphar.2020.602590

Link to full text

Therapeutic effects of classic serotonergic psychedelics: A systematic review of modern-era clinical studies

Abstract

Objective: To conduct a systematic review of modern-era (post-millennium) clinical studies assessing the therapeutic effects of serotonergic psychedelics drugs for mental health conditions. Although the main focus was on efficacy and safety, study characteristics, duration of antidepressants effects across studies, and the role of the subjective drug experiences were also reviewed and presented.

Method: A systematic literature search (1 Jan 2000 to 1 May 2020) was conducted in PubMed and PsychINFO for studies of patients undergoing treatment with a serotonergic psychedelic.

Results: Data from 16 papers, representing 10 independent psychedelic-assisted therapy trials (psilocybin = 7, ayahuasca = 2, LSD = 1), were extracted, presented in figures and tables, and narratively synthesized and discussed. Across these studies, a total of 188 patients suffering either cancer- or illness-related anxiety and depression disorders (C/I-RADD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD) or substance use disorder (SUD) were included. The reviewed studies established feasibility and evidence of safety, alongside promising early data of efficacy in the treatment of depression, anxiety, OCD, and tobacco and alcohol use disorders. For a majority of patients, the therapeutic effects appeared to be long-lasting (weeks-months) after only 1 to 3 treatment session(s). All studies were conducted in line with guidelines for the safe conduct of psychedelic therapy, and no severe adverse events were reported.

Conclusion: The resurrection of clinical psychedelic research provides early evidence for treatment efficacy and safety for a range of psychiatric conditions, and constitutes an exciting new treatment avenue in a health area with major unmet needs.

Andersen, K., Carhart-Harris, R., Nutt, D. J., & Erritzoe, D. (2021). Therapeutic effects of classic serotonergic psychedelics: A systematic review of modern-era clinical studies. Acta psychiatrica Scandinavica, 143(2), 101–118. https://doi.org/10.1111/acps.13249

Link to full text

Hallucinations Under Psychedelics and in the Schizophrenia Spectrum: An Interdisciplinary and Multiscale Comparison

Abstract

The recent renaissance of psychedelic science has reignited interest in the similarity of drug-induced experiences to those more commonly observed in psychiatric contexts such as the schizophrenia-spectrum. This report from a multidisciplinary working group of the International Consortium on Hallucinations Research (ICHR) addresses this issue, putting special emphasis on hallucinatory experiences. We review evidence collected at different scales of understanding, from pharmacology to brain-imaging, phenomenology and anthropology, highlighting similarities and differences between hallucinations under psychedelics and in the schizophrenia-spectrum disorders. Finally, we attempt to integrate these findings using computational approaches and conclude with recommendations for future research.

Leptourgos, P., Fortier-Davy, M., Carhart-Harris, R., Corlett, P. R., Dupuis, D., Halberstadt, A. L., Kometer, M., Kozakova, E., LarØi, F., Noorani, T. N., Preller, K. H., Waters, F., Zaytseva, Y., & Jardri, R. (2020). Hallucinations Under Psychedelics and in the Schizophrenia Spectrum: An Interdisciplinary and Multiscale Comparison. Schizophrenia bulletin, 46(6), 1396–1408. https://doi.org/10.1093/schbul/sbaa117

Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Management of Psychedelic-Related Complications - Online Event - Nov 20th