OPEN Foundation

Search
Close this search box.

Psychiatry & Medicine

Ketamine interactions with gut-microbiota in rats: relevance to its antidepressant and anti-inflammatory properties.

Abstract

BACKGROUND:
Appreciable evidence suggest that dysbiosis in microbiota, reflected in gut microbial imbalance plays a key role in the pathogenesis of neuropsychiatric disorders including depression and inflammatory diseases. Recently, the antidepressant properties of ketamine have gained prominence due to its fast and long lasting effects. Additional uses for ketamine in inflammatory disorders such as irritable bowel syndrome have been suggested. However, ketamine’s exact mechanism of action and potential effects on microbiome is not known. Here, we examined the effects of low dose ketamine, known to induce antidepressant effects, on stool microbiome profile in adult male Wistar rats. Animals (5/group) were injected intraperitoneally with ketamine (2.5 mg/kg) or saline, daily for 7 days and sacrificed on day 8 when intestinal stools were collected and stored at - 80 °C. DNA was extracted from the samples and the 16 S rRNA gene-based microbiota analysis was performed using 16S Metagenomics application.
RESULTS:
At genus-level, ketamine strikingly amplified Lactobacillus, Turicibacter and Sarcina by 3.3, 26 and 42 fold, respectively. Conversely, opportunistic pathogens Mucispirillum and Ruminococcus were reduced by approximately 2.6 and 26 fold, respectively, in ketamine group. Low levels of Lactobacillus and Turicibacter are associated with various disorders including depression and administration of certain species of Lactobacillus ameliorates depressive-like behavior in animal models. Hence, some of the antidepressant effects of ketamine might be mediated through its interaction with these gut bacteria. Additionally, high level of Ruminococcus is positively associated with the severity of irritable bowel syndrome (IBS), and some species of Mucispirillum have been associated with intestinal inflammation. Indirect evidence of anti-inflammatory role of Sarcina has been documented. Hence, some of the anti-inflammatory effects of ketamine and its usefulness in specific inflammatory diseases including IBS may be mediated through its interaction with these latter bacteria.
CONCLUSION:
Our data suggest that at least some of the antidepressant and anti-inflammatory effects of daily ketamine treatment for 7 days may be mediated via its interaction with specific gut bacteria. These findings further validate the usefulness of microbiome as a target for therapeutic intervention and call for more detailed investigation of microbiome interaction with central mediators of mood and/or inflammatory disorders.
Getachew, B., Aubee, J. I., Schottenfeld, R. S., Csoka, A. B., Thompson, K. M., & Tizabi, Y. (2018). Ketamine interactions with gut-microbiota in rats: relevance to its antidepressant and anti-inflammatory properties. BMC microbiology18(1), 222., 10.1186/s12866-018-1373-7
Link to full text

Hallucinogen Persisting Perception Disorder After Ibogaine Treatment for Opioid Dependence

Abstract

Abstract unavailable for this article.
Knuijver, T., Belgers, M., Markus, W., Verkes, R. J., van Oosteren, T., & Schellekens, A. (2018). Hallucinogen persisting perception disorder after ibogaine treatment for opioid dependence. Journal of clinical psychopharmacology38(6), 646-648., 10.1097/JCP.0000000000000966
Link to full text

Possible Interactions Between 5-HT2A Receptors and the Endocannabinoid System in Humans: Preliminary Evidence of Interactive Effects of Ayahuasca and Endocannabinoids in a Healthy Human Subject

Excerpt

To the Editors

Ayahuasca is an ethnobotanical hallucinogenic preparation traditionally used for ritual and therapeutic purposes in the Northwestern Amazon Basin. It is prepared by the decoction of the bark of the vine Banisteriopsis caapi with the leaves of the shrub Psychotria viridisBanisteriopsis caapi contains the β-carbolines harmine, tetrahydroharmine, and harmaline, which are reversible inhibitors of monoamine oxidase type A (MAO-A), whereas P. viridis contains N,N-dimethyltryptamine (DMT), an agonist at 5-HT1A/2A/2C receptors. Pure DMT is not active orally because it is metabolized by MAO-A, but the β-carbolines in ayahuasca inhibit peripheral MAO-A and allow DMT to reach the brain. The β-carbolines also reach the systemic circulation in humans, but their effects are poorly characterized.

A recent randomized controlled trial (RCT) with 29 patients with treatment-resistant depression showed that, compared with placebo, a single ayahuasca dose induced significant antidepressant effects 7 days after drug intake. The mechanisms behind these effects are not clear but seem to involve agonism at cortical 5-HT2A receptors in brain areas related to emotional processing. 5-HT2A receptor activation also leads to the formation and release of endocannabinoids (ECs), and both the production and release of the EC 2-arachidonoylglycerol (2-AG) are induced by 5-HT2A agonists. Considering that the 5-HT2Areceptor and the EC system (ECS) are coexpressed in brain regions related to emotional processing, they could be involved in the antidepressive effect of ayahuasca. To test the possible interaction between both systems, we administered in an open-label design a single oral ayahuasca dose (1 mL/kg) to a healthy 34-year-old man and assessed subjective effects (Visual Analog Mood Scale [VAMS], Bodily Symptoms Scale, Beck Anxiety Inventory [BAI]), tolerability (blood pressure and heart rate, self-report), and EC plasma levels (anandamide [AEA], 2-AG) at several time points: VAMS, Bodily Symptoms Scale, blood pressure, and heart rate at baseline and 40, 90, 120, 150, and 240 minutes after drug intake; BAI–baseline, 240 minutes after drug intake; AEA, 2-AG (blood samples) at baseline and 90 and 240 minutes after drug intake. Analysis of the ayahuasca sample using gas chromatography with nitrogen-phosphorus detection showed the following alkaloid content (in mg/mL): 0.702 DMT, 1.748 harmine, 0.780 tetrahydroharmine, and 0.039 harmaline. Analysis of plasma ECs was performed using ultrahigh-performance liquid chromatography–tandem mass spectrometry. Detailed information on subjective measures and ayahuasca and EC analyses is described in the Supplemental Digital Content, http://links.lww.com/JCP/A532

The volunteer was not taking any medication and was requested to abstain from alcohol, tobacco, and caffeinated drinks 12 hours before ayahuasca intake. He arrived in the laboratory at 7:00 AM under fasting conditions, and urinalysis for illicit drug use was performed before ayahuasca intake (the test measured cannabis and cocaine and was negative for both drugs). Afterward, a cannula was introduced in his arm for collecting blood samples. Ayahuasca was administered at approximately 8:00 AM, and the experimental session lasted 5 hours. The experimental session consisted in the administration of the drug followed by application of the scales and assessment of tolerability measures at the aforementioned time points. During measurements, the volunteer remained seated in a comfortable reclining chair in a quiet dimly lit room. There was no psychological intervention before, during, or after the session.The volunteer remained in the laboratory under observation to see if the effects had subsided and was discharged around 6 hours after drug intake, which is the approximate duration of the psychoactive effects of ayahuasca.

dos Santos, R. G., Crippa, J. A., de Lima Osório, F., Rocha, J. M., Rossi, G. N., Marchioni, C., … & Hallak, J. E. C. (2018). Possible Interactions Between 5-HT2A Receptors and the Endocannabinoid System in Humans: Preliminary Evidence of Interactive Effects of Ayahuasca and Endocannabinoids in a Healthy Human Subject. Journal of clinical psychopharmacology38(6), 644-646., 10.1097/JCP.0000000000000973
Link to full text

Intravenous Ketamine for Adolescents with Treatment-Resistant Depression: An Open-Label Study

Abstract

BACKGROUND:

Novel interventions for treatment-resistant depression (TRD) in adolescents are urgently needed. Ketamine has been studied in adults with TRD, but little information is available for adolescents. This study investigated efficacy and tolerability of intravenous ketamine in adolescents with TRD, and explored clinical response predictors.

METHODS:

Adolescents, 12-18 years of age, with TRD (failure to respond to two previous antidepressant trials) were administered six ketamine (0.5 mg/kg) infusions over 2 weeks. Clinical response was defined as a 50% decrease in Children’s Depression Rating Scale-Revised (CDRS-R); remission was CDRS-R score ≤28. Tolerability assessment included monitoring vital signs and dissociative symptoms using the Clinician-Administered Dissociative States Scale (CADSS).

RESULTS:

Thirteen participants (mean age 16.9 years, range 14.5-18.8 years, eight biologically male) completed the protocol. Average decrease in CDRS-R was 42.5% (p = 0.0004). Five (38%) adolescents met criteria for clinical response. Three responders showed sustained remission at 6-week follow-up; relapse occurred within 2 weeks for the other two responders. Ketamine infusions were generally well tolerated; dissociative symptoms and hemodynamic symptoms were transient. Higher dose was a significant predictor of treatment response.

CONCLUSIONS:

These results demonstrate the potential role for ketamine in treating adolescents with TRD. Limitations include the open-label design and small sample; future research addressing these issues are needed to confirm these results. Additionally, evidence suggested a dose-response relationship; future studies are needed to optimize dose. Finally, questions remain regarding the long-term safety of ketamine as a depression treatment; more information is needed before broader clinical use.

Cullen, K. R., Amatya, P., Roback, M. G., Albott, C. S., Westlund Schreiner, M., Ren, Y., … & Reigstad, K. (2018). Intravenous Ketamine for Adolescents with Treatment-Resistant Depression: An Open-Label Study. Journal of child and adolescent psychopharmacology28(7), 437-444., 10.1089/cap.2018.0030

Link to full text

Neurocognitive effects of six ketamine infusions and the association with antidepressant response in patients with unipolar and bipolar depression

Abstract

BACKGROUND:

Ketamine has proven to have rapid, robust antidepressant effects on treatment-resistant depression. However, whether repeated ketamine infusions would cause short-and long-term neurocognitive impairments was not clear. Our aims were to investigate the neurocognitive effects of six ketamine infusions and to examine the association between these infusions and the antidepressant response in patients with unipolar and bipolar depression.

METHODS:

Six intravenous infusions of ketamine (0.5 mg/kg) over a 12-day period were administered to 84 patients with unipolar and bipolar depression. Severity of depressive symptoms and four domains of neurocognition, including speed of processing, working memory, visual learning and verbal learning, were assessed at baseline, one day following the last infusion and again two weeks post-infusion.

RESULTS:

Significant improvements were found on speed of processing ( F=9.344, p<0.001) and verbal learning ( F=5.647, p=0.004) in a linear mixed model. The Sobel test showed significant indirect effects between time and improvement in speed of processing (Sobel test=3.573, p<0.001) as well as improvement in verbal learning (Sobel test=6.649, p<0.001), which were both significantly mediated by change in depressive symptoms. Logistic regression analysis showed ketamine responders had better visual learning at baseline than non-responders (B=0.118, p<0.001).

CONCLUSIONS:

Our findings suggest that neurocognitive function would not deteriorate after six ketamine infusions, while verbal learning and speed of processing improved over 13 days and 26 days of observation, respectively. However, this change was mainly accounted for by improvements in severity of depressive symptoms over time. Greater baseline visual learning predicted an antidepressant response over six ketamine infusions.

Zhou, Y., Zheng, W., Liu, W., Wang, C., Zhan, Y., Li, H., … & Ning, Y. (2018). Neurocognitive effects of six ketamine infusions and the association with antidepressant response in patients with unipolar and bipolar depression. Journal of Psychopharmacology32(10), 1118-1126, 10.1177/0269881118798614
Link to full text

Understanding Central Nervous System Effects of Deliriant Hallucinogenic Drugs through Experimental Animal Models

Abstract

Hallucinogenic drugs potently alter human behavior and have a millennia-long history of use for medicinal and religious purposes. Interest is rapidly growing in their potential as CNS modulators and therapeutic agents for brain conditions. Antimuscarinic cholinergic drugs, such as atropine and scopolamine, induce characteristic hyperactivity and dream-like hallucinations and form a separate group of hallucinogens known as “deliriants”. Although atropine and scopolamine are relatively well-studied drugs in cholinergic physiology, deliriants represent the least-studied class of hallucinogens in terms of their behavioral and neurological phenotypes. As such, novel approaches and new model organisms are needed to investigate the CNS effects of these compounds. Here, we comprehensively evaluate the preclinical effects of deliriant hallucinogens in various animal models, their mechanisms of action, and potential interplay with other signaling pathways. We also parallel experimental and clinical findings on deliriant agents and outline future directions of translational research in this field.

Volgin, A. D., Yakovlev, O. A., Demin, K. A., Alekseeva, P. A., Kyzar, E. J., Collins, C., … & Kalueff, A. V. (2018). Understanding Central Nervous System Effects of Deliriant Hallucinogenic Drugs through Experimental Animal Models. ACS chemical neuroscience., 10.1021/acschemneuro.8b00433

Link to full text

Hemorheological and metabolic consequences of renal ischemia-reperfusion and their modulation by N,N-dimethyl-tryptamine on a rat model

Abstract

BACKGROUND:
Micro-rheological relations of renal ischemia-reperfusion (I/R) have not been completely elucidated yet. Concerning anti-inflammatory agents, it is supposed that sigma-1 receptor agonist N,N-dimethyl-tryptamin (DMT) can be useful to reduce I/R injury.
OBJECTIVE:
To investigate the micro-rheological and metabolic parameters, and the effects of DMT in renal I/R in rats.
METHODS:
In anesthetized rats from median laparotomy both kidneys were exposed. In Control group (n = 6) no other intervention happened. In I/R group (n = 10) the right renal vessels were ligated and after 60 minutes the organ was removed. The left renal vessels were clamped for 60 minutes followed by 120-minute reperfusion. In I/R+DMT group (n = 10) DMT was administered 15 minutes before the ischemia. Blood samples were taken before/after ischemia and during the reperfusion for testing hematological, metabolic parameters, erythrocyte deformability and aggregation.
RESULTS:
Lactate concentration significantly increased and accompanied with decreased blood pH. Enhanced erythrocyte aggregation and impaired deformability were observed from the 30th minute of reperfusion. In I/R+DMT group we found diminished changes compared to the I/R group (lactate, pH, electrolytes, red blood cell deformability and aggregation).
CONCLUSIONS:
Metabolic and micro-rheological parameters impair during renal I/R. DMT could reduce but not completely prevent the changes in this rat model.
Peto, K., Nemeth, N., Mester, A., Magyar, Z., Ghanem, S., Somogyi, V., … & Nemes, B. (2018). Hemorheological and metabolic consequences of renal ischemia-reperfusion and their modulation by N, N-dimethyl-tryptamine on a rat model. Clinical hemorheology and microcirculation, (Preprint), 1-11. 10.3233/CH-170361
Link to full text

Rapid effectiveness of intravenous ketamine for ultraresistant depression in a clinical setting and evidence for baseline anhedonia and bipolarity as clinical predictors of effectiveness

Abstract

BACKGROUND:

Intravenous ketamine has been established as an efficacious and safe treatment, with transient effect, for treatment-resistant depression. However, the effectiveness of intravenous ketamine in non-research settings and with ultraresistant depression patients remains understudied.

AIMS:

This study aims to measure the response and remission rates in ultraresistant depression patients in a clinical setting by means of a retrospective, open label, database study. Secondarily, the study will attempt to support previous findings of clinical predictors of effectiveness with intravenous ketamine treatment.

METHODS:

Fifty patients with ultraresistant depression were treated between May 2015-December 2016, inclusive, in two community hospitals in Edmonton using six ketamine infusions of 0.5 mg/kg over 40 min over 2-3 weeks. Data were collected retrospectively from inpatient and outpatient charts. Statistical analysis to investigate clinical predictors of effectiveness included logistic regression analysis using a dependent variable of a 50% reduction in rating scale score at any point during treatment.

RESULTS:

At baseline, the average treatment resistance was severe, with a Maudsley Staging Method score of 12.1 out of 15, 90.0% were resistant to electroconvulsive therapy, and the average Beck Depression Inventory score was 34.2. The response rate was 44% and remission rate was 16%. As a single predictor, moderate or severe anhedonia at baseline predicted a 55% increased likelihood of response. As a combined predictor, this level of anhedonia at baseline with a diagnosis of bipolar depression predicted a 73% increase in likelihood of response.

CONCLUSION:

In a clinical setting, intravenous ketamine showed effectiveness in a complex, severely treatment-resistant, depressed population on multiple medication profiles concurrently. This study gave support to anhedonia and bipolar depression as clinical predictors of effectiveness.

Thomas, R. K., Baker, G., Lind, J., & Dursun, S. (2018). Rapid effectiveness of intravenous ketamine for ultraresistant depression in a clinical setting and evidence for baseline anhedonia and bipolarity as clinical predictors of effectiveness. Journal of psychopharmacology32(10), 1110-1117., 10.1177/0269881118793104
Link to full text

d-Lysergic acid diethylamide, psilocybin, and other classic hallucinogens: Mechanism of action and potential therapeutic applications in mood disorders.

Abstract

Depression and anxiety are psychiatric diagnoses commonly associated with low quality of life and low percentage of responsiveness by patients treated with currently available drugs. Thus, research into alternative compounds to treat these disorders is essential to guarantee a patient’s remission. The last decade has witnessed a revamped interest for the application of psychedelic medicine for the treatment of mental disorders due to anecdotal reports and clinical studies which show that low doses of d-lysergic acid diethylamide (LSD) and psilocybin may have antidepressant effects. LSD and psilocybin have demonstrated mood-modulating properties likely due to their capacity to modulate serotonergic (5-HT), dopaminergic (DA) and glutamatergic systems. LSD, belonging to the category of “classic halluginogens,” interacts with the 5-HT system through 5HT1A, and 5HT2A receptors, with the DA system through D2 receptors, and indirectly also the glutamatergic neurotransmission thought the recruitment of N-methyl-d-aspartate (NMDA) receptors. Randomized clinical studies have confirmed its antidepressant and anxiolytic effects in humans. Thus, in this chapter, we will review the pharmacology of psychedelic drugs, report the most striking clinical evidence which substantiate the therapeutic potentials of these fascinating compounds in mood disorders, and look into the horizon of where psychedelic medicine is heading.
De, D. G., Enns, J. P., Nuñez, N. A., Posa, L., & Gobbi, G. (2018). d-Lysergic acid diethylamide, psilocybin, and other classic hallucinogens: Mechanism of action and potential therapeutic applications in mood disorders. Progress in brain research242, 69-96., 10.1016/bs.pbr.2018.07.008
Link to full text

Therapeutic Potential Ascribed to Ayahuasca by Users in the Czech Republic

This article focuses on the therapeutic potential ascribed to ayahuasca by users in the Czech Republic. Following an online survey, the fieldwork among users of ayahuasca was carried out from November 2015 to December 2016. The research sample consisted of 46 persons (23 women and 23 men), who took part at least once in some type of ayahuasca ritual and/or were the facilitators of the ayahuasca sessions. We held semi-structured interviews with participants in order to discover the therapeutic potential of ayahuasca. Transcribed recordings were analyzed using the Grounded Theory Method. The results suggest that the intensity of effects produced by ayahuasca is not directly proportional to its therapeutic effect. According to the informants, ayahuasca is applicable in the treatment of drug addiction. They consider it to have a broad spectrum of therapeutic potential. This therapeutic potential could be based on memory recall.
Horák, M., Hasíková, L., & Verter, N. (2018). Therapeutic Potential Ascribed to Ayahuasca by Users in the Czech Republic. Journal of psychoactive drugs50(5), 430-436., 10.1080/02791072.2018.1511878
Link to full text
 

Online Event - Psychedelic Care in Recreational Settings - 3 October 2024

X

interested in becoming a trained psychedelic-assisted therapist?