OPEN Foundation

Scienitific Discipline

Decreased directed functional connectivity in the psychedelic state.

Abstract

Neuroimaging studies of the psychedelic state offer a unique window onto the neural basis of conscious perception and selfhood. Despite well understood pharmacological mechanisms of action, the large-scale changes in neural dynamics induced by psychedelic compounds remain poorly understood. Using source-localised, steady-state MEG recordings, we describe changes in functional connectivity following the controlled administration of LSD, psilocybin and low-dose ketamine, as well as, for comparison, the (non-psychedelic) anticonvulsant drug tiagabine. We compare both undirected and directed measures of functional connectivity between placebo and drug conditions. We observe a general decrease in directed functional connectivity for all three psychedelics, as measured by Granger causality, throughout the brain. These data support the view that the psychedelic state involves a breakdown in patterns of functional organisation or information flow in the brain. In the case of LSD, the decrease in directed functional connectivity is coupled with an increase in undirected functional connectivity, which we measure using correlation and coherence. This surprising opposite movement of directed and undirected measures is of more general interest for functional connectivity analyses, which we interpret using analytical modelling. Overall, our results uncover the neural dynamics of information flow in the psychedelic state, and highlight the importance of comparing multiple measures of functional connectivity when analysing time-resolved neuroimaging data.

Barnett, L., Muthukumaraswamy, S. D., Carhart-Harris, R. L., & Seth, A. K. (2019). Decreased directed functional connectivity in the psychedelic state. NeuroImage, 116462., https://doi.org/10.1016/j.neuroimage.2019.116462
Link to full text

From Egoism to Ecoism: Psychedelics Increase Nature Relatedness in a State-Mediated and Context-Dependent Manner.

Abstract

(1) Background: There appears to be a growing disconnection between humans and their natural environments which has been linked to poor mental health and ecological destruction. Previous research suggests that individual levels of nature relatedness can be increased through the use of classical psychedelic compounds, although a causal link between psychedelic use and nature relatedness has not yet been established. (2) Methods: Using correlations and generalized linear mixed regression modelling, we investigated the association between psychedelic use and nature relatedness in a prospective online study. Individuals planning to use a psychedelic received questionnaires 1 week before (N = 654), plus one day, 2 weeks, 4 weeks, and 2 years after a psychedelic experience. (3) Results: The frequency of lifetime psychedelic use was positively correlated with nature relatedness at baseline. Nature relatedness was significantly increased 2 weeks, 4 weeks and 2 years after the psychedelic experience. This increase was positively correlated with concomitant increases in psychological well-being and was dependent on the extent of ego-dissolution and the perceived influence of natural surroundings during the acute psychedelic state. (4) Conclusions: The here presented evidence for a context- and state-dependent causal effect of psychedelic use on nature relatedness bears relevance for psychedelic treatment models in mental health and, in the face of the current ecological crisis, planetary health.
Kettner, H., Gandy, S., Haijen, E. C., & Carhart-Harris, R. L. (2019). From Egoism to Ecoism: Psychedelics Increase Nature Relatedness in a State-Mediated and Context-Dependent Manner. International Journal of Environmental Research and Public Health16(24), 5147., https://doi.org/10.3390/ijerph16245147
Link to full text
 

The relationship between subjective effects induced by a single dose of ketamine and treatment response in patients with major depressive disorder: A systematic review.

Abstract

OBJECTIVE:
The relationship between ketamine’s hallucinogenic- and dissociative-type effects and antidepressant mechanism of action is poorly understood. This paper reviewed the correlation between subjective effects defined by various psychometric scales and observed clinical outcomes in the treatment of patients with Major Depressive Disorder (MDD).
METHODS:
Based on PRISMA guidelines, we reviewed the dissociative and psychotomimetic mental state induced with ketamine during MDD treatment. Our selected studies correlated depression rating with validated scales collected at regular intervals throughout the study period such as the Clinician-Administered Dissociative States Scale (CADSS), Brief Psychiatric Rating Scale (BPRS), and the 5-Dimensional Altered States of Consciousness Rating Scale (5D-ASC). We excluded studies with bipolar depression or with repeated dosing and no single-dose phase. We included 8 of 556 screened reports.
RESULTS:
Two of five CADSS studies found significant negative correlations between increases in CADSS scores and depression scores. One of six BPRS studies demonstrated correlations between BPRS scores and depression scores. The 5D-ASC’s one study found no correlation with the MADRS.
CONCLUSIONS:
Ketamine’s dissociative and psychotomimetic effects were correlated with depression changes in 37.5% of studies, but most studies did not examine this relationship and future studies should consider this association since it appears important for MDMA and psilocybin therapies.
Mathai, D. S., Meyer, M. J., Storch, E. A., & Kosten, T. R. (2020). The relationship between subjective effects induced by a single dose of ketamine and treatment response in patients with major depressive disorder: A systematic review. Journal of Affective Disorders264, 123-129., https://doi.org/10.1016/j.jad.2019.12.023
Link to full text
 

Neurotrophic mechanisms of psychedelic therapy

Abstract

Psychedelic drugs, often referred to as hallucinogens, are quite distinct from other classes of psychotropic drugs. Although the subjective and behavioral effects they induce are quite dramatic, they possess little addictive potential when compared to nicotine, alcohol or opiates. Since the discovery of ketamine antidepressant effects, there has been growing interest for these molecules. Serotonergic psychedelics such as psilocybin and lysergic acid diethylamide (LSD) are gaining attention as potential treatments for depression and addiction, similarly to 3,4-methylenedioxymethamphetamine (MDMA) for post-traumatic stress disorder (PTSD), and ibogaine for addiction. Although they possess distinct pharmacological profiles, their kinetics of action are quite similar: the therapeutic effects are felt within the hours following administration, and last well beyond drug elimination by the organism. This strongly suggests the induction of neurogenic and plastic mechanisms, including the involvement of trophic factors. This review will explore the literature dealing with the effects of psychedelics on neurotrophins, as well as the plastic adaptations that they induce, in an attempt to understand their surprising therapeutic potential. We will show that although ketamine and serotonergic psychedelics have affinity for very different receptors (NMDA, 5-HT2A), they ultimately initiate similar plastic adaptations in the prefrontal cortex through the involvement of the brain-derived neurotrophic factor (BDNF). We will see that although MDMA uses the same receptors as serotonergic psychedelics to alleviate PTSD symptoms, its effect on BDNF levels seem paradoxical and quite different. Finally, we show how ibogaine could exert its anti-addictive properties through a completely different neurotrophic factor than other psychedelic drugs, the glial cell line-derived neurotrophic factor (GDNF). While the current literature concerning the psychiatric applications of psychedelic therapy is encouraging, it remains to be determined whether their benefits could be obtained without their psychotomimetic effects, or concerns over potential toxicity.
Corne, R., & Mongeau, R. (2019). Neurotrophic mechanisms of psychedelic therapy. Biologie aujourd’hui213(3-4), 121., https://doi.org/10.1051/jbio/2019015
Link to full text

 

Neurochemical and Behavioral Profiling in Male and Female Rats of the Psychedelic Agent 25I-NBOMe

Abstract

4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe), commonly called “N-Bomb,” is a synthetic phenethylamine with psychedelic and entactogenic effects; it was available on the Internet both as a legal alternative to lysergic acid diethylamide (LSD) and as a surrogate of 3,4-methylenedioxy-methamphetamine (MDMA), but now it has been scheduled among controlled substances. 25I-NBOMe acts as full agonist on serotonergic 5-HT2A receptors. Users are often unaware of ingesting fake LSD, and several cases of intoxication and fatalities have been reported. In humans, overdoses of “N-Bomb” can cause tachycardia, hypertension, seizures, and agitation. Preclinical studies have not yet widely investigated the rewarding properties and behavioral effects of this compound in both sexes. Therefore, by in vivo microdialysis, we evaluated the effects of 25I-NBOMe on dopaminergic (DA) and serotonergic (5-HT) transmissions in the nucleus accumbens (NAc) shell and core, and the medial prefrontal cortex (mPFC) of male and female rats. Moreover, we investigated the effect of 25I-NBOMe on sensorimotor modifications as well as body temperature, nociception, and startle/prepulse inhibition (PPI). We showed that administration of 25I-NBOMe affects DA transmission in the NAc shell in both sexes, although showing different patterns; moreover, this compound causes impaired visual responses in both sexes, whereas core temperature is heavily affected in females, and the highest dose tested exerts an analgesic effect prominent in male rats. Indeed, this drug is able to impair the startle amplitude with the same extent in both sexes and inhibits the PPI in male and female rats. Our study fills the gap of knowledge on the behavioral effects of 25I-NBOMe and the risks associated with its ingestion; it focuses the attention on sex differences that might be useful to understand the trend of consumption as well as to recognize and treat intoxication and overdose symptoms.

Miliano, C., Marti, M., Pintori, N., Castelli, M. P., Tirri, M., Arfè, R., & De Luca, M. A. (2019). Neurochemical and Behavioral Profiling in Male and Female Rats of the Psychedelic Agent 25I-NBOMe. Frontiers in Pharmacology10., 10.3389/fphar.2019.01406
Link to full text

4-MeO-PCP and 3-MeO-PCMo, new dissociative drugs, produce rewarding and reinforcing effects through activation of mesolimbic dopamine pathway and alteration of accumbal CREB, deltaFosB, and BDNF levels

Abstract

Rationale: A high number of synthetic dissociative drugs continue to be available through online stores, leading to their misuse. Recent inclusions in this category are 4-MeO-PCP and 3-MeO-PCMo, analogs of phencyclidine. Although the dissociative effects of these drugs and their recreational use have been reported, no studies have investigated their abuse potential.

Objectives: To examine their rewarding and reinforcing effects and explore the mechanistic correlations.

Methods: We used conditioned place preference (CPP), self-administration, and locomotor sensitization tests to assess the rewarding and reinforcing effects of the drugs. We explored their mechanism of action by pretreating dopamine receptor (DR) D1 antagonist SCH23390 and DRD2 antagonist haloperidol during CPP test and investigated the effects of 4-MeO-PCP and 3-MeO-PCMo on dopamine-related proteins in the ventral tegmental area and nucleus accumbens. We also measured the levels of dopamine, phosphorylated cyclic-AMP response element-binding (p-CREB) protein, deltaFosB, and brain-derived neurotrophic factor (BDNF) in the nucleus accumbens. Additionally, we examined the effects of both drugs on brain wave activity using electroencephalography.

Results: While both 4-MeO-PCP and 3-MeO-PCMo induced CPP and self-administration, only 4-MeO-PCP elicited locomotor sensitization. SCH23390 and haloperidol inhibited the acquisition of drug CPP. 4-MeO-PCP and 3-MeO-PCMo altered the levels of tyrosine hydroxylase, DRD1, DRD2, and dopamine, as well as that of p-CREB, deltaFosB, and BDNF. All drugs increased the delta and gamma wave activity, whereas pretreatment with SCH23390 and haloperidol inhibited it.

Conclusion: Our results indicate that 4-MeO-PCP and 3-MeO-PCMo induce rewarding and reinforcing effects that are probably mediated by the mesolimbic dopamine system, suggesting an abuse liability in humans.

Abiero, A., Botanas, C. J., Custodio, R. J., Sayson, L. V., Kim, M., Lee, H. J., … & Cheong, J. H. (2020). 4-MeO-PCP and 3-MeO-PCMo, new dissociative drugs, produce rewarding and reinforcing effects through activation of mesolimbic dopamine pathway and alteration of accumbal CREB, deltaFosB, and BDNF levels. Psychopharmacology237(3), 757-772; 10.1007/s00213-019-05412-y

Link to full text

Prospective examination of synthetic 5-methoxy-N,N-dimethyltryptamine inhalation: effects on salivary IL-6, cortisol levels, affect, and non-judgment

Abstract

Rationale

5-methoxy-N,N-dimethyltryptamine is a psychotropic substance found in various plant and animal species and is synthetically produced. 5-methoxy-N,N-dimethyltryptamine is used in naturalistic settings for spiritual exploration, recreation, or to address negative affect and mood problems. However, scientific knowledge on the effects of 5-methoxy-N,N-dimethyltryptamine in humans is scarce.

Objectives

The first objective was to assess the effects of inhalation of vaporized synthetic 5-methoxy-N,N-dimethyltryptamine on neuroendocrine markers. The second objective was to assess effects of the substance on affect and mindfulness. In addition, we assessed whether ratings of subjective measures were associated with changes in stress biomarkers (i.e., cortisol) and immune response (i.e., IL-6, CRP, IL-1β), as well as the acute psychedelic experience.

Methods

Assessments (baseline, immediately post-session, and 7-day follow-up) were made in 11 participants. Salivary samples were collected at baseline and post-session and analyzed by high-sensitivity enzyme-linked immunosorbent assay (ELISA).

Results

5-methoxy-N,N-dimethyltryptamine significantly increased cortisol levels and decreased IL-6 concentrations in saliva immediately post-session. These changes were not correlated to ratings of mental health or the psychedelic experience. Relative to baseline, ratings of non-judgment significantly increased, and ratings of depression decreased immediately post-session and at follow-up. Ratings of anxiety and stress decreased from baseline to 7-day follow-up. Participant ratings of the psychedelic experience correlated negatively with ratings of affect and positively with ratings of non-judgment.

Conclusion

Inhalation of vaporized synthetic 5-methoxy-N,N-dimethyltryptamine produced significant changes in inflammatory markers, improved affect, and non-judgment in volunteers. Future research should examine the effect of 5-methoxy-N,N-dimethyltryptamineamine with healthy volunteers in a controlled laboratory setting.

Uthaug, M. V., Lancelotta, R., Szabo, A., Davis, A. K., Riba, J., & Ramaekers, J. G. (2019). Prospective examination of synthetic 5-methoxy-N, N-dimethyltryptamine inhalation: effects on salivary IL-6, cortisol levels, affect, and non-judgment. Psychopharmacology, 1-13., 10.1007/s00213-019-05414-w
Link to full text

Neuropharmacological modulation of the aberrant bodily self through psychedelics

Abstract

As a continual source of sensory input and fundamental component of self-referential processing, the body holds an integral modulatory role in cognition. In a healthy state, predictive coding of multisensory integration promotes the construction of a coherent self. However, several psychiatric disorders comprise aberrant perceptions of the bodily self that are purported to involve discrepancies in the integration and updating of multisensory systems. Changes in functional connectivity of somatomotor and high-level association networks in these disorders could be successfully remediated through 5-HT2A receptor agonism via psychedelics. Reported alterations of bodily self-awareness during psychedelic experiences allude to a potentially central role of the bodily self. In this article, we bridge the domains of (aberrant) bodily self-awareness and psychedelics by discussing the predictive coding mechanisms underlying the bodily self and psychedelics. Furthermore, we propose that psychedelically-induced desynchronization of predictive coding might involve modulation of somatomotor, sensorimotor, and high-level association networks that could remediate aberrant perceptions of the bodily self.

Ho, J. T., Preller, K. H., & Lenggenhager, B. (2019). Neuropharmacological modulation of the aberrant bodily self through psychedelics. Neuroscience & Biobehavioral Reviews., https://doi.org/10.1016/j.neubiorev.2019.12.006
Link to full text

Injury-Triggered Blueing Reactions of Psilocybe “Magic” Mushrooms

Abstract

Upon injury, psychotropic psilocybin-producing mushrooms instantly develop an intense blue color, the chemical basis and mode of formation of which has remained elusive. We report two enzymes from Psilocybe cubensis that carry out a two-step cascade to prepare psilocybin for oxidative oligomerization that leads to blue products. The phosphatase PsiP removes the 4-O-phosphate group to yield psilocin, while PsiL oxidizes its 4-hydroxy group. The PsiL reaction was monitored by in situ 13 C NMR spectroscopy, which indicated that oxidative coupling of psilocyl residues occurs primarily via C-5. MS and IR spectroscopy indicated the formation of a heterogeneous mixture of preferentially psilocyl 3- to 13-mers and suggest multiple oligomerization routes, depending on oxidative power and substrate concentration. The results also imply that phosphate ester of psilocybin serves a reversible protective function.

Lenz, C., Wick, J., Braga, D., García-Altares, M., Lackner, G., Hertweck, C., Gressler, M., & Hoffmeister, D. (2020). Injury-Triggered Blueing Reactions of Psilocybe “Magic” Mushrooms. Angewandte Chemie (International ed. in English), 59(4), 1450–1454. https://doi.org/10.1002/anie.201910175

Link to full text

Modulation of Social Cognition via Hallucinogens and “Entactogens”.

Abstract

Social cognition is a fundamental ability in human everyday lives. Deficits in social functioning also represent a core aspect of many psychiatric disorders. Yet, despite its significance, deficits in social cognition skills are insufficiently targeted by current treatments. Hallucinogens and entactogens have been shown to have the potential to modulate social processing. This article reviews the literature on the influence of hallucinogens and entactogens on social processing in controlled experimental studies in humans and elucidates the underlying neurobiological and neuropharmacological mechanisms. Furthermore, it identifies current knowledge gaps and derives implications for hallucinogen-assisted treatment approaches as well as the development of novel medication for trans-diagnostic impairments in social cognition.

Preller, K. H., & Vollenweider, F. X. (2019). Modulation of Social Cognition via Hallucinogens and “Entactogens”. Frontiers in Psychiatry10., https://doi.org/10.3389/fpsyt.2019.00881
Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Management of Psychedelic-Related Complications - Online Event - Nov 20th