OPEN Foundation

Neuroscience

Ketamine safety and tolerability in clinical trials for treatment-resistant depression

Abstract

OBJECTIVE: Ketamine has demonstrated rapid antidepressant effects in patients with treatment-resistant depression (TRD); however, the safety and tolerability of ketamine in this population have not been fully described. Herein we report the largest study to date of the safety, tolerability, and acceptability of ketamine in TRD.

METHOD: Data from 205 intravenous (IV) ketamine infusions (0.5 mg/kg over 40 minutes) in 97 participants with DSM-IV-defined major depressive disorder (MDD) were pooled from 3 clinical trials conducted between 2006 and 2012 at 2 academic medical centers. Safety and tolerability measures included attrition, adverse events (AEs), hemodynamic changes, and assessments of psychosis and dissociation.

RESULTS: The overall antidepressant response rate, defined as a ≥ 50% improvement in Montgomery-Asberg Depression Rating Scale score, was 67% (65 of 97 participants). Four of 205 infusions (1.95%) were discontinued due to AEs. The overall attrition rate was 3.1% (3 of 97). In the first 4 hours after the infusion, the most common general AEs were drowsiness, dizziness, poor coordination, blurred vision, and feeling strange or unreal. Approximately one third of individuals experienced protocol-defined hemodynamic changes. Ketamine resulted in small but significant increases in psychotomimetic and dissociative symptoms (all P <.05). There were no cases of persistent psychotomimetic effects, adverse medical effects, or increased substance use in a subgroup of patients with available long-term follow-up information.

CONCLUSIONS: In this relatively large group of patients with TRD, ketamine was safe and well tolerated. Further research investigating the safety of ketamine in severe and refractory depression is warranted.

Wan, L. B., Levitch, C. F., Perez, A. M., Brallier, J. W., Iosifescu, D. V., Chang, L. C., … & Murrough, J. W. (2014). Ketamine safety and tolerability in clinical trials for treatment-resistant depression. The Journal of clinical psychiatry. https://dx.doi.org/10.4088/JCP.13m08852

Link to full text

Entheogens, Mysticism, and Neuroscience

Abstract

Entheogens or psychedelic drugs such as lysergic acid diethylamide (LSD) and psilocybin are associated with mystical states of experience. Drug laws currently limit research, but important new work is under way at major biomedical research facilities showing that entheogens reliably occasion mystical experiences and thereby allow research into brain states during these experiences. Are drug-occasioned mystical experiences neurologically the same as more traditional mystical states? Are there phenomenological and theological differences? As this research goes forward and the public becomes more widely aware of its achievements, religious scholars and experts in science and religion will be called upon to interpret the philosophical and theological presuppositions that underpin this research and the significance of the findings that flow from it.

Cole-Turner, R. (2014). Entheogens, Mysticism, and Neuroscience. Zygon: Journal of Religion and Science, 49(3), 642-651. http://dx.doi.org/10.1111/zygo.12110
Link to full text

Recent advances in the neuropsychopharmacology of serotonergic hallucinogens

Abstract

Serotonergic hallucinogens, such as (+)-lysergic acid diethylamide, psilocybin, and mescaline, are somewhat enigmatic substances. Although these drugs are derived from multiple chemical families, they all produce remarkably similar effects in animals and humans, and they show cross-tolerance. This article reviews the evidence demonstrating the serotonin 5-HT2A receptor is the primary site of hallucinogen action. The 5-HT2A receptor is responsible for mediating the effects of hallucinogens in human subjects, as well as in animal behavioral paradigms such as drug discrimination, head twitch response, prepulse inhibition of startle, exploratory behavior, and interval timing. Many recent clinical trials have yielded important new findings regarding the psychopharmacology of these substances. Furthermore, the use of modern imaging and electrophysiological techniques is beginning to help unravel how hallucinogens work in the brain. Evidence is also emerging that hallucinogens may possess therapeutic efficacy.

Halberstadt, A. L. (2014). Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behavioural Brain Research, 277, 99-120. http://dx.doi.org/10.1016/j.bbr.2014.07.016
Link to full text

The role of 5-HT2A, 5-HT2C and mGlu2 receptors in the behavioral effects of tryptamine hallucinogens N,N-dimethyltryptamine and N,N-diisopropyltryptamine in rats and mice

Abstract

Rationale

Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens.

Objective

The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT).

Methods

Drug discrimination, head twitch, and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084), and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT.

Results

MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT’s effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low-potency full agonist at 5-HT2CR in vitro.

Conclusions

The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree.

Carbonaro, T. M., Eshleman, A. J., Forster, M. J., Cheng, K., Rice, K. C., & Gatch, M. B. (2014). The role of 5-HT2A, 5-HT2C and mGlu2 receptors in the behavioral effects of tryptamine hallucinogens N, N-dimethyltryptamine and N, N-diisopropyltryptamine in rats and mice. Psychopharmacology, 1-10. https://dx.doi.org/10.1007/s00213-014-3658-3

Link to full text

Enhanced repertoire of brain dynamical states during the psychedelic experience

Abstract

The study of rapid changes in brain dynamics and functional connectivity (FC) is of increasing interest in neuroimaging. Brain states departing from normal waking consciousness are expected to be accompanied by alterations in the aforementioned dynamics. In particular, the psychedelic experience produced by psilocybin (a substance found in `magic mushrooms`) is characterized by unconstrained cognition and profound alterations in the perception of time, space and selfhood. Considering the spontaneous and subjective manifestation of these effects, we hypothesize that neural correlates of the psychedelic experience can be found in the dynamics and variability of spontaneous brain activity fluctuations and connectivity, measurable with functional Magnetic Resonance Imaging (fMRI). Fifteen healthy subjects were scanned before, during and after intravenous infusion of psilocybin and an inert placebo. Blood-Oxygen Level Dependent (BOLD) temporal variability was assessed computing the variance and total spectral power, resulting in increased signal variability bilaterally in the hippocampi and anterior cingulate cortex. Changes in BOLD signal spectral behavior (including spectral scaling exponents) affected exclusively higher brain systems such as the default mode, executive control and dorsal attention networks. A novel framework enabled us to track different connectivity states explored by the brain during rest. This approach revealed a wider repertoire of connectivity states post-psilocybin than during control conditions. Together, the present results provide a comprehensive account of the effects of psilocybin on dynamical behaviour in the human brain at a macroscopic level and may have implications for our understanding of the unconstrained, hyper-associative quality of consciousness in the psychedelic state.

Tagliazucchi, E., Carhart-Harris, R. L., Leech, R., Nutt, D., & Chialvo, D. R. (2014). Enhanced repertoire of brain dynamical states during the psychedelic experience. Human Brain Mapping, 35(11), 5442-5456. http://dx.doi.org/10.1002/hbm.22562
Link to full text

(R,S)-Ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin function

Abstract

BACKGROUND: Subanesthetic doses of (R,S)-ketamine are used in the treatment of neuropathic pain and depression. In the rat, the antidepressant effects of (R,S)-ketamine are associated with increased activity and function of mammalian target of rapamycin (mTOR); however, (R,S)-ketamine is extensively metabolized and the contribution of its metabolites to increased mTOR signaling is unknown.

METHODS: Rats (n = 3 per time point) were given (R,S)-ketamine, (R,S)-norketamine, and (2S,6S)-hydroxynorketamine and their effect on the mTOR pathway determined after 20, 30, and 60 min. PC-12 pheochromocytoma cells (n = 3 per experiment) were treated with escalating concentrations of each compound and the impact on the mTOR pathway was determined.

RESULTS: The phosphorylation of mTOR and its downstream targets was significantly increased in rat prefrontal cortex tissue by more than ~2.5-, ~25-, and ~2-fold, respectively, in response to a 60-min postadministration of (R,S)-ketamine, (R,S)-norketamine, and (2S,6S)-hydroxynorketamine (P < 0.05, ANOVA analysis). In PC-12 pheochromocytoma cells, the test compounds activated the mTOR pathway in a concentration-dependent manner, which resulted in a significantly higher expression of serine racemase with ~2-fold increases at 0.05 nM (2S,6S)-hydroxynorketamine, 10 nM (R,S)-norketamine, and 1,000 nM (R,S)-ketamine. The potency of the effect reflected antagonistic activity of the test compounds at the α7-nicotinic acetylcholine receptor.

CONCLUSIONS: The data demonstrate that (R,S)-norketamine and (2S,6S)-hydroxynorketamine have potent pharmacological activity both in vitro and in vivo and contribute to the molecular effects produced by subanesthetic doses of (R,S)-ketamine. The results suggest that the determination of the mechanisms underlying the antidepressant and analgesic effects of (R,S)-ketamine requires a full study of the parent compound and its metabolites.

Paul, R. K., Singh, N. S., Khadeer, M., Moaddel, R., Sanghvi, M., Green, C. E., … & Wainer, I. W. (2014). (R, S)-Ketamine metabolites (R, S)-norketamine and (2S, 6S)-hydroxynorketamine increase the mammalian target of rapamycin function. The Journal of the American Society of Anesthesiologists, 121(1), 149-159. http://dx.doi.org/10.1097/ALN.0000000000000285
Link to full text

Hallucinogen persisting perception disorder and the serotonergic system: A comprehensive review including new MDMA-related clinical cases

Abstract

Hallucinogen persisting perception disorder (HPPD) is a drug-induced condition associated with inaccurate visual representations. Since the underlying mechanism(s) are largely unknown, this review aims to uncover aspects underlying its etiology. Available evidence on HPPD and drug-related altered visual processing was reviewed and the majority of HPPD cases were attributed to drugs with agonistic effects on serotonergic 5-HT2A receptors. Moreover, we present 31 new HPPD cases that link HPPD to the use of ecstasy (MDMA), which is known to reverse serotonin reuptake and acts as agonist on 5-HT2A receptors. The available evidence suggests that HPPD symptoms may be a result from a misbalance of inhibitory-excitatory activity in low-level visual processing and GABA-releasing inhibitory interneurons may be involved. However, high co-morbidities with anxiety, attention problems and derealization symptoms add complexity to the etiology of HPPD. Also, other perceptual disorders that show similarity to HPPD cannot be ruled out in presentations to clinical treatment. Taken together, evidence is still sparse, though low-level visual processing may play an important role. A novel finding of this review study, evidenced by our new cases, is that ecstasy (MDMA) use may also induce symptoms of HPPD.

Litjens, R. P., Brunt, T. M., Alderliefste, G. J., & Westerink, R. H. (2014). Hallucinogen persisting perception disorder and the serotonergic system: A comprehensive review including new MDMA-related clinical cases. European Neuropsychopharmacology, 24(8), 1309-1323. https://dx.doi.org/10.1016/j.euroneuro.2014.05.008

Link to full text

Pharmacology of Hallucinations: Several Mechanisms for One Single Symptom?

Abstract

Hallucinations are complex misperceptions, that principally occur in schizophrenia or after intoxication induced by three main classes of drugs: psychostimulants, psychedelics, and dissociative anesthetics. There are at least three different pharmacological ways to induce hallucinations: (1) activation of dopamine D2 receptors (D2Rs) with psychostimulants, (2) activation of serotonin 5HT2A receptors (HT2ARs) with psychedelics, and (3) blockage of glutamate NMDA receptors (NMDARs) with dissociative anesthetics. In schizophrenia, the relative importance of NMDAR and D2R in the occurrence of hallucinations is still debated. Slight clinical differences are observed for each etiology. Thus, we investigated whether the concept of hallucination is homogenous, both clinically and neurobiologically. A narrative review of the literature is proposed to synthesize how the main contributors in the field have approached and tried to solve these outstanding questions. While some authors prefer one explanatory mechanism, others have proposed more integrated theories based on the different pharmacological psychosis models. In this review, such theories are discussed and faced with the clinical data. In addition, the nosological aspects of hallucinations and psychosis are addressed. We suggest that if there may be common neurobiological pathways between the different pharmacological systems that are responsible for the hallucinations, there may also be unique properties of each system, which explains the clinical differences observed.

Rolland, B., Jardri, R., Amad, A., Thomas, P., Cottencin, O., & Bordet, R. (2014). Pharmacology of Hallucinations: Several Mechanisms for One Single Symptom? Biomed Research International. http://dx.doi.org/10.1155/2014/307106
Link to full text

The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers

Abstract

Perturbing a system and observing the consequences is a classic scientific strategy for understanding a phenomenon. Psychedelic drugs perturb consciousness in a marked and novel way and thus are powerful tools for studying its mechanisms. In the present analysis, we measured changes in resting-state functional connectivity (RSFC) between a standard template of different independent components analysis (ICA)-derived resting state networks (RSNs) under the influence of two different psychoactive drugs, the stimulant/psychedelic hybrid, MDMA, and the classic psychedelic, psilocybin. Both were given in placebo-controlled designs and produced marked subjective effects, although reports of more profound changes in consciousness were given after psilocybin. Between-network RSFC was generally increased under psilocybin, implying that networks become less differentiated from each other in the psychedelic state. Decreased RSFC between visual and sensorimotor RSNs was also observed. MDMA had a notably less marked effect on between-network RSFC, implying that the extensive changes observed under psilocybin may be exclusive to classic psychedelic drugs and related to their especially profound effects on consciousness. The novel analytical approach applied here may be applied to other altered states of consciousness to improve our characterization of different conscious states and ultimately advance our understanding of the brain mechanisms underlying them.

Roseman, L., Leech, R., Feilding, A., Nutt, D. J., & Carhart-Harris, R. L. (2014). The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers. Frontiers in Human Neuroscience, 8, 1-11. http://dx.doi.org/10.3389/fnhum.2014.00204
Link to full text

The effect of psilocin on memory acquisition, retrieval, and consolidation in the rat

Abstract

The involvement of the serotonin system in the pathophysiology of schizophrenia has been elucidated by experiments with hallucinogens. Application of a hallucinogen to humans leads to changes in perception, cognition, emotions, and induction of psychotic-like symptoms that resemble symptoms of schizophrenia. In rodent studies, their acute administration affects sensorimotor gating, locomotor activity, social behavior, and cognition including working memory, the phenotypes are considered as an animal model of schizophrenia. The complexity and singularity of human cognition raises questions about the validity of animal models utilizing agonists of 5-HT2A receptors. The present study thus investigated the effect of psilocin on memory acquisition, reinforced retrieval, and memory consolidation in rats. Psilocin is a main metabolite of psilocybin acting as an agonist at 5-HT2A receptors with a contribution of 5-HT2C and 5-HT1A receptors. First, we tested the effect of psilocin on the acquisition of a Carousel maze, a spatial task requiring navigation using distal cues, attention, and cognitive coordination. Psilocin significantly impaired the acquisition of the Carousel maze at both doses (1 and 4 mg/kg). The higher dose of psilocin blocked the learning processes even in an additional session when the rats received only saline. Next, we examined the effect of psilocin on reinforced retrieval and consolidation in the Morris water maze (MWM). The dose of 4 mg/kg disrupted reinforced retrieval in the MWM. However, the application of a lower dose was without any significant effect. Finally, neither the low nor high dose of psilocin injected post-training caused a deficit in memory consolidation in the MWM. Taken together, the psilocin dose dependently impaired the acquisition of the Carousel maze and reinforced retrieval in MWM; however, it had no effect on memory consolidation.

Rambousek, L., Palenicek, T., Vales, K., & Stuchlik, A. (2014). The effect of psilocin on memory acquisition, retrieval, and consolidation in the rat. Frontiers in Behavioral Neuroscience, 8. https://dx.doi.org/10.3389/fnbeh.2014.00180
Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Management of Psychedelic-Related Complications - Online Event - Nov 20th