OPEN Foundation

Search
Close this search box.

Neuroscience

Increased signal diversity/complexity of spontaneous EEG, but not evoked EEG responses, in ketamine-induced psychedelic state in humans

Abstract

How and to what extent electrical brain activity reflects pharmacologically altered states and contents of consciousness, is not well understood. Therefore, we investigated whether measures of evoked and spontaneous electroencephalographic (EEG) signal diversity are altered by sub-anaesthetic levels of ketamine compared to normal wakefulness, and how these measures relate to subjective experience. High-density 62-channel EEG was used to record spontaneous brain activity and responses evoked by transcranial magnetic stimulation (TMS) in 10 healthy volunteers before and during administration of sub-anaesthetic doses of ketamine in an open-label within-subject design. Evoked signal diversity was assessed using the perturbational complexity index (PCI), calculated from EEG responses to TMS perturbations. Signal diversity of spontaneous EEG, with eyes open and eyes closed, was assessed by Lempel Ziv complexity (LZc), amplitude coalition entropy (ACE), and synchrony coalition entropy (SCE). Although no significant difference was found in TMS-evoked complexity (PCI) between the sub-anaesthetic ketamine condition and normal wakefulness, all measures of spontaneous EEG signal diversity (LZc, ACE, SCE) showed significantly increased values in the sub-anaesthetic ketamine condition. This increase in signal diversity correlated with subjective assessment of altered states of consciousness. Moreover, spontaneous signal diversity was significantly higher when participants had eyes open compared to eyes closed, both during normal wakefulness and during influence of sub-anaesthetic ketamine. The results suggest that PCI and spontaneous signal diversity may reflect distinct, complementary aspects of changes in brain properties related to altered states of consciousness: the brain’s capacity for information integration, assessed by PCI, might be indicative of the brain’s ability to sustain consciousness, while spontaneous complexity, as measured by EEG signal diversity, may be indicative of the complexity of conscious content. Thus, sub-anaesthetic ketamine may increase the complexity of the conscious content and the brain activity underlying it, while the level or general capacity for consciousness remains largely unaffected.

Farnes, N., Juel, B. E., Nilsen, A. S., Romundstad, L. G., & Storm, J. F. (2020). Increased signal diversity/complexity of spontaneous EEG, but not evoked EEG responses, in ketamine-induced psychedelic state in humans. PloS one, 15(11), e0242056. https://doi.org/10.1371/journal.pone.0242056

Link to full text

MDMA-induced changes in within-network connectivity contradict the specificity of these alterations for the effects of serotonergic hallucinogens

Abstract

It has been reported that serotonergic hallucinogens like lysergic acid diethylamide (LSD) induce decreases in functional connectivity within various resting-state networks. These alterations were seen as reflecting specific neuronal effects of hallucinogens and it was speculated that these shifts in connectivity underlie the characteristic subjective drug effects. In this study, we test the hypothesis that these alterations are not specific for hallucinogens but that they can be induced by monoaminergic stimulation using the non-hallucinogenic serotonin-norepinephrine-dopamine releasing agent 3,4-methylenedioxymethamphetamine (MDMA). In a randomized, placebo-controlled, double-blind, crossover design, 45 healthy participants underwent functional magnetic resonance imaging (fMRI) following oral administration of 125 mg MDMA. The networks under question were identified using independent component analysis (ICA) and were tested with regard to within-network connectivity. Results revealed decreased connectivity within two visual networks, the default mode network (DMN), and the sensorimotor network. These findings were almost identical to the results previously reported for hallucinogenic drugs. Therefore, our results suggest that monoaminergic substances can induce widespread changes in within-network connectivity in the absence of marked subjective drug effects. This contradicts the notion that these alterations can be regarded as specific for serotonergic hallucinogens. However, changes within the DMN might explain antidepressants effects of some of these substances.

Müller, F., Holze, F., Dolder, P., Ley, L., Vizeli, P., Soltermann, A., Liechti, M. E., & Borgwardt, S. (2021). MDMA-induced changes in within-network connectivity contradict the specificity of these alterations for the effects of serotonergic hallucinogens. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 46(3), 545–553. https://doi.org/10.1038/s41386-020-00906-2

Link to full text

DARK Classics in Chemical Neuroscience: Salvinorin A

Abstract

Salvinorin A is the main bioactive compound in Salvia divinorum, an endemic plant with ancestral use by the inhabitants of the Mazateca mountain range (Sierra Mazateca) in Oaxaca, México. The main use of la pastora, as locally known, is in spiritual rites due to its extraordinary hallucinogenic effects. Being the first known nonalkaloidal opioid-mediated psychotropic molecule, salvinorin A set new research areas in neuroscience. The absence of a protonated amine group, common to all previously known opioids, results in a fast metabolism with the concomitant fast elimination and swift loss of activity. The worldwide spread and psychotropic effects of salvinorin A account for its misuse and classification as a drug of abuse. Consequently, salvinorin A and Salvia divinorum are now banned in many countries. Several synthetic efforts have been focused on the improvement of physicochemical and biological properties of salvinorin A: from total synthesis to hundreds of analogues. In this Review, we discuss the impact of salvinorin A in chemistry and neuroscience covering the historical relevance, isolation from natural sources, synthetic efforts, and pharmacological and safety profiles. Altogether, the chemistry behind and the taboo that encloses salvinorin A makes it one of the most exquisite naturally occurring drugs.

Hernández-Alvarado, R. B., Madariaga-Mazón, A., Ortega, A., & Martinez-Mayorga, K. (2020). DARK Classics in Chemical Neuroscience: Salvinorin A. ACS chemical neuroscience, 10.1021/acschemneuro.0c00608. Advance online publication. https://doi.org/10.1021/acschemneuro.0c00608

Link to full tex

Anti-inflammatory activity of ayahuasca: therapeutical implications in neurological and psychiatric diseases

Abstract

Ayahuasca is a decoction with psychoactive properties, used for millennia for therapeutic and religious purposes by indigenous groups and the population of amazonian countries. As described in this narrative review, it is essentially constituted by β-carbolines and tryptamines, and it has therapeutic effects on behavioral disorders due to the inhibition of the monoamine oxidase enzyme and the activation of 5-hydroxytryptamine receptors, demonstrated through preclinical and clinical studies. It was recently observed that the pharmacological response presented by ayahuasca is linked to its anti-inflammatory action, attributed mainly to dimethyltryptamines (N, N-dimethyltryptamine and 5-methoxy-N, N-dimethyltryptamine), which act as endogenous systemic regulators of inflammation and immune homeostasis, also through sigma-1 receptors. Therefore, since neuroinflammation is among the main pathophysiological mechanisms related to the development of neurological and psychiatric diseases, we suggest, based on the available evidence, that ayahuasca is a promising and very safe therapeutic strategy since extremely high doses are required to reach toxicity. However, even so, additional studies are needed to confirm such evidence, as well as the complete elucidation of the mechanisms involved.

da Silva, M. G., Daros, G. C., & de Bitencourt, R. M. (2021). Anti-inflammatory activity of ayahuasca: therapeutical implications in neurological and psychiatric diseases. Behavioural brain research, 400, 113003. https://doi.org/10.1016/j.bbr.2020.113003

Link to full text

Transcriptional regulation in the rat prefrontal cortex and hippocampus after a single administration of psilocybin

Abstract

Background: Psilocybin is a serotonergic psychedelic found in “magic mushrooms” with a putative therapeutic potential for treatment-resistant depression, anxiety, obsessive-compulsive disorder, and addiction. In rodents, psilocybin acutely induces plasticity-related immediate early genes in cortical tissue; however, studies into the effects on subcortical regions, of different doses, and the subsequent translation of corresponding proteins are lacking.

Methods: We examined the acute effects of a single administration of psilocybin (0.5-20 mg/kg) on the expression of selected genes in the prefrontal cortex and hippocampus. In total, 46 target genes and eight reference genes were assessed using real-time quantitative polymerase chain reaction. Corresponding protein levels of the three most commonly regulated genes were assessed using Western blotting.

Results: In the prefrontal cortex, psilocybin increased the expression of Cebpb, c-Fos, Dups1, Fosb, Junb, Iκβ-α, Nr4a1, P11, Psd95, and Sgk1, and decreased the expression of Clk1. In the hippocampus, psilocybin strongly increased the expression of Arrdc2, Dusp1, Iκβ-α, and Sgk1 in a dose-dependent manner, and decreased the expression of Arc, Clk1, Egr2, and Ptgs2. Protein levels of Sgk1, Dusp1, and Iκβ-α showed only partial agreement with transcriptional patterns, stressing the importance of assessing downstream translation when investigating rapid gene responses.

Conclusion: The present study demonstrates that psilocybin rapidly induces gene expression related to neuroplasticity, biased towards the prefrontal cortex, compared to the hippocampus. Our findings provide further evidence for the rapid plasticity-promoting effects of psilocybin.

Jefsen, O. H., Elfving, B., Wegener, G., & Müller, H. K. (2021). Transcriptional regulation in the rat prefrontal cortex and hippocampus after a single administration of psilocybin. Journal of psychopharmacology (Oxford, England), 35(4), 483–493. https://doi.org/10.1177/0269881120959614O.

Link to full text

A mechanistic model of the neural entropy increase elicited by psychedelic drugs

Abstract

Psychedelic drugs, including lysergic acid diethylamide and other agonists of the serotonin 2A receptor (5HT2A-R), induce drastic changes in subjective experience, and provide a unique opportunity to study the neurobiological basis of consciousness. One of the most notable neurophysiological signatures of psychedelics, increased entropy in spontaneous neural activity, is thought to be of relevance to the psychedelic experience, mediating both acute alterations in consciousness and long-term effects. However, no clear mechanistic explanation for this entropy increase has been put forward so far. We sought to do this here by building upon a recent whole-brain model of serotonergic neuromodulation, to study the entropic effects of 5HT2A-R activation. Our results reproduce the overall entropy increase observed in previous experiments in vivo, providing the first model-based explanation for this phenomenon. We also found that entropy changes were not uniform across the brain: entropy increased in some regions and decreased in others, suggesting a topographical reconfiguration mediated by 5HT2A-R activation. Interestingly, at the whole-brain level, this reconfiguration was not well explained by 5HT2A-R density, but related closely to the topological properties of the brain’s anatomical connectivity. These results help us understand the mechanisms underlying the psychedelic state and, more generally, the pharmacological modulation of whole-brain activity.

Herzog, R., Mediano, P., Rosas, F. E., Carhart-Harris, R., Perl, Y. S., Tagliazucchi, E., & Cofre, R. (2020). A mechanistic model of the neural entropy increase elicited by psychedelic drugs. Scientific reports, 10(1), 17725. https://doi.org/10.1038/s41598-020-74060-6

Link to full text

Psilocybin exerts distinct effects on resting state networks associated with serotonin and dopamine in mice

Abstract

Hallucinogenic agents have been proposed as potent antidepressants; this includes the serotonin (5-HT) receptor 2A agonist psilocybin. In human subjects, psilocybin alters functional connectivity (FC) within the default-mode network (DMN), a constellation of inter-connected regions that displays altered FC in depressive disorders. In this study, we investigated the effects of psilocybin on FC across the entire brain with a view to investigate underlying mechanisms. Psilocybin effects were investigated in lightly-anaesthetized mice using resting-state fMRI. Dual-regression analysis identified reduced FC within the ventral striatum in psilocybin- relative to vehicle-treated mice. Refinement of the analysis using spatial references derived from both gene expression maps and viral tracer projection fields revealed two distinct effects of psilocybin: it increased FC between 5-HT-associated networks and cortical areas, including elements of the murine DMN, thalamus, and midbrain; it decreased FC within dopamine (DA)-associated striatal networks. These results suggest that interactions between 5-HT- and DA-regulated neural networks contribute to the neural and therefore psychological effects of psilocybin. Furthermore, they highlight how information on molecular expression patterns and structural connectivity can assist in the interpretation of pharmaco-fMRI findings.

Grandjean, J., Buehlmann, D., Buerge, M., Sigrist, H., Seifritz, E., Vollenweider, F. X., Pryce, C. R., & Rudin, M. (2021). Psilocybin exerts distinct effects on resting state networks associated with serotonin and dopamine in mice. NeuroImage, 225, 117456. https://doi.org/10.1016/j.neuroimage.2020.117456

Link to full text

Psilocybin exerts distinct effects on resting state networks associated with serotonin and dopamine in mice

Abstract

Hallucinogenic agents have been proposed as potent antidepressants; this includes the serotonin (5-HT) receptor 2A agonist psilocybin. In human subjects, psilocybin alters functional connectivity (FC) within the default-mode network (DMN), a constellation of inter-connected regions that displays altered FC in depressive disorders. In this study, we investigated the effects of psilocybin on FC across the entire brain with a view to investigate underlying mechanisms. Psilocybin effects were investigated in lightly-anaesthetized mice using resting-state fMRI. Dual-regression analysis identified reduced FC within the ventral striatum in psilocybin- relative to vehicle-treated mice. Refinement of the analysis using spatial references derived from both gene expression maps and viral tracer projection fields revealed two distinct effects of psilocybin: it increased FC between 5-HT-associated networks and cortical areas, including elements of the murine DMN, thalamus, and midbrain; it decreased FC within dopamine (DA)-associated striatal networks. These results suggest that interactions between 5-HT- and DA-regulated neural networks contribute to the neural and therefore psychological effects of psilocybin. Furthermore, they highlight how information on molecular expression patterns and structural connectivity can assist in the interpretation of pharmaco-fMRI findings.

Grandjean, J., Buehlmann, D., Buerge, M., Sigrist, H., Seifritz, E., Vollenweider, F. X., Pryce, C. R., & Rudin, M. (2021). Psilocybin exerts distinct effects on resting state networks associated with serotonin and dopamine in mice. NeuroImage, 225, 117456. https://doi.org/10.1016/j.neuroimage.2020.117456

Link to full text

DMT alters cortical travelling waves

Abstract

Psychedelic drugs are potent modulators of conscious states and therefore powerful tools for investigating their neurobiology. N,N, Dimethyltryptamine (DMT) can rapidly induce an extremely immersive state of consciousness characterized by vivid and elaborate visual imagery. Here, we investigated the electrophysiological correlates of the DMT-induced altered state from a pool of participants receiving DMT and (separately) placebo (saline) while instructed to keep their eyes closed. Consistent with our hypotheses, results revealed a spatio-temporal pattern of cortical activation (i.e. travelling waves) similar to that elicited by visual stimulation. Moreover, the typical top-down alpha-band rhythms of closed-eyes rest were significantly decreased, while the bottom-up forward wave was significantly increased. These results support a recent model proposing that psychedelics reduce the ‘precision-weighting of priors’, thus altering the balance of top-down versus bottom-up information passing. The robust hypothesis-confirming nature of these findings imply the discovery of an important mechanistic principle underpinning psychedelic-induced altered states.

Alamia, A., Timmermann, C., Nutt, D. J., VanRullen, R., & Carhart-Harris, R. L. (2020). DMT alters cortical travelling waves. eLife, 9, e59784. https://doi.org/10.7554/eLife.59784

Link to full text

Brain serotonin 2A receptor binding predicts subjective temporal and mystical effects of psilocybin in healthy humans

Abstract

Background: Psilocybin is a serotonergic psychedelic with psychoactive effects mediated by serotonin 2A receptor (5-HT2AR) activation. It produces an acute psychedelic altered state of consciousness with a unique phenomenology that can be temporally characterized by three intensity phases: onset of psychoactive effect, a peak plateau and return to normal consciousness.

Aims: We evaluated whether pre-drug brain 5-HT2AR binding predicted the three phases of psilocybin subjective drug intensity (SDI) and retrospective self-report of mystical type experiences in healthy individuals.

Method: Sixteen participants completed a pre-drug [11C]Cimbi-36 positron emission tomography scan to assess 5-HT2AR binding. On a separate day, participants completed a single psilocybin session (oral dose range 0.2-0.3 mg/kg), during which SDI was assessed every 20 min. The Mystical Experience Questionnaire (MEQ) was completed at the end of the session. The three SDI phases were modelled using segmented linear regressions. We evaluated the associations between neocortex 5-HT2AR binding and SDI/MEQ outcomes using linear regression models.

Results: Neocortex 5-HT2AR was statistically significantly negatively associated with peak plateau duration and positively with time to return to normal waking consciousness. It was also statistically significantly negatively associated with MEQ total score.

Conclusion: This is the first study to investigate how individual brain 5-HT2AR binding predicts subjective effects of a single dose of psilocybin. Our findings reinforce the role of cerebral 5-HT2AR in shaping the temporal and mystical features of the psychedelic experience. Future studies should examine whether individual brain levels of 5-HT2AR have an impact on therapeutic outcomes in clinical studies.

Stenbæk, D. S., Madsen, M. K., Ozenne, B., Kristiansen, S., Burmester, D., Erritzoe, D., Knudsen, G. M., & Fisher, P. M. (2021). Brain serotonin 2A receptor binding predicts subjective temporal and mystical effects of psilocybin in healthy humans. Journal of psychopharmacology (Oxford, England), 35(4), 459–468. https://doi.org/10.1177/0269881120959609

Link to full text

Online Event - Psychedelic Care in Recreational Settings - 3 October 2024

X

interested in becoming a trained psychedelic-assisted therapist?