OPEN Foundation

Neuroscience

Neural network models for DMT-induced visual hallucinations

Abstract

The regulatory role of the serotonergic system on conscious perception can be investigated perturbatorily with psychedelic drugs such as N,N-Dimethyltryptamine. There is increasing evidence that the serotonergic system gates prior (endogenous) and sensory (exogenous) information in the construction of a conscious experience. Using two generative deep neural networks as examples, we discuss how such models have the potential to be, firstly, an important medium to illustrate phenomenological visual effects of psychedelics-besides paintings, verbal reports and psychometric testing-and, secondly, their utility to conceptualize biological mechanisms of gating the influence of exogenous and endogenous information on visual perception.

Schartner, M. M., & Timmermann, C. (2020). Neural network models for DMT-induced visual hallucinations. Neuroscience of consciousness, 2020(1), niaa024. https://doi.org/10.1093/nc/niaa024

Link to full text

Neural Mechanisms Underlying the Rewarding and Therapeutic Effects of Ketamine as a Treatment for Alcohol Use Disorder

Abstract

Alcohol use disorder (AUD) is the most prevalent substance use disorder and causes a significant global burden. Relapse rates remain incredibly high after decades of attempting to develop novel treatment options that have failed to produce increased rates of sobriety. Ketamine has emerged as a potential treatment for AUD following its success as a therapeutic agent for depression, demonstrated by several preclinical studies showing that acute administration reduced alcohol intake in rodents. As such, ketamine’s therapeutic effects for AUD are now being investigated in clinical trials with the hope of it being efficacious in prolonging sobriety from alcohol in humans (ClinicalTrials.gov, Identifier: NCT01558063). Importantly, ketamine’s antidepressant effects only last for about 1-week and because AUD is a lifelong disorder, repeated treatment regimens would be necessary to maintain sobriety. This raises questions regarding its safety for AUD treatment since ketamine itself has the potential for addiction. Therefore, this review aims to summarize the neuroadaptations related to alcohol’s addictive properties as well as ketamine’s therapeutic and addictive properties. To do this, the focus will be on reward-related brain regions such as the nucleus accumbens (NAc), dorsal striatum, prefrontal cortex (PFC), hippocampus, and ventral tegmental area (VTA) to understand how acute vs. chronic exposure will alter reward signaling over time. Additionally, evidence from these studies will be summarized in both male and female subjects. Accordingly, this review aims to address the safety of repeated ketamine infusions for the treatment of AUD. Although more work about the safety of ketamine to treat AUD is warranted, we hope this review sheds light on some answers about the safety of repeated ketamine infusions.

Strong, C. E., & Kabbaj, M. (2020). Neural Mechanisms Underlying the Rewarding and Therapeutic Effects of Ketamine as a Treatment for Alcohol Use Disorder. Frontiers in behavioral neuroscience, 14, 593860. https://doi.org/10.3389/fnbeh.2020.593860

Link to full text

Involvement of NMDA receptors containing the GluN2C subunit in the psychotomimetic and antidepressant-like effects of ketamine

Abstract

Acute ketamine administration evokes rapid and sustained antidepressant effects in treatment-resistant patients. However, ketamine also produces transient perceptual disturbances similarly to those evoked by other non-competitive NMDA-R antagonists like phencyclidine (PCP). Although the brain networks involved in both ketamine actions are not fully understood, PCP and ketamine activate thalamo-cortical networks after NMDA-R blockade in GABAergic neurons of the reticular thalamic nucleus (RtN). Given the involvement of thalamo-cortical networks in processing sensory information, these networks may underlie psychotomimetic action. Since the GluN2C subunit is densely expressed in the thalamus, including the RtN, we examined the dependence of psychotomimetic and antidepressant-like actions of ketamine on the presence of GluN2C subunits, using wild-type and GluN2C knockout (GluN2CKO) mice. Likewise, since few studies have investigated ketamine’s effects in females, we used mice of both sexes. GluN2C deletion dramatically reduced stereotyped (circling) behavior induced by ketamine in male and female mice, while the antidepressant-like effect was fully preserved in both genotypes and sexes. Despite ketamine appeared to induce similar effects in both sexes, some neurobiological differences were observed between male and female mice regarding c-fos expression in thalamic nuclei and cerebellum, and glutamate surge in prefrontal cortex. In conclusion, the GluN2C subunit may discriminate between antidepressant-like and psychotomimetic actions of ketamine. Further, the abundant presence of GluN2C subunits in the cerebellum and the improved motor coordination of GluN2CKO mice after ketamine treatment suggest the involvement of cerebellar NMDA-Rs in some behavioral actions of ketamine.

Tarrés-Gatius, M., Miquel-Rio, L., Campa, L., Artigas, F., & Castañé, A. (2020). Involvement of NMDA receptors containing the GluN2C subunit in the psychotomimetic and antidepressant-like effects of ketamine. Translational psychiatry, 10(1), 427. https://doi.org/10.1038/s41398-020-01110-y

Link to full text

A non-hallucinogenic psychedelic analogue with therapeutic potential

Abstract

The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals1. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine-like those of other psychedelic compounds-are long-lasting2, which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling3,4. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog-a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.

Cameron, L. P., Tombari, R. J., Lu, J., Pell, A. J., Hurley, Z. Q., Ehinger, Y., Vargas, M. V., McCarroll, M. N., Taylor, J. C., Myers-Turnbull, D., Liu, T., Yaghoobi, B., Laskowski, L. J., Anderson, E. I., Zhang, G., Viswanathan, J., Brown, B. M., Tjia, M., Dunlap, L. E., Rabow, Z. T., … Olson, D. E. (2021). A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature, 589(7842), 474–479. https://doi.org/10.1038/s41586-020-3008-z

Link to full text

The Ketamine Antidepressant Story: New Insights

Abstract

Ketamine is a versatile agent primarily utilized as a dissociative anesthetic, which acts by blocking the excitatory receptor N-methyl-d-aspartate receptor (NMDA). It functions to inhibit the current of both Na+ and K+ voltage-gated channels, thus preventing serotonin and dopamine reuptake. Studies have indicated that administering a single subanesthetic dose of ketamine relieves depression rapidly and that the effect is sustained. For decades antidepressant agents were based on the monoamine theory. Although ketamine may not be the golden antidepressant, it has opened new avenues toward mechanisms involved in the pathology of treatment-resistant depression and achieving rapid antidepressant effects. Thus, preclinical studies focusing on deciphering the molecular mechanisms involved in the antidepressant action of ketamine will assist in the development of a new antidepressant. This review was conducted to elucidate the emerging pathways that can explain the complex dose-dependent mechanisms achieved by administering ketamine to treat major depressive disorders. Special attention was paid to reviewing the literature on hydroxynorketamines, which are ketamine metabolites that have recently attracted attention in the context of depression.

Alshammari T. K. (2020). The Ketamine Antidepressant Story: New Insights. Molecules (Basel, Switzerland), 25(23), 5777. https://doi.org/10.3390/molecules25235777

Link to full text

Effects of a single dose of psilocybin on behaviour, brain 5-HT 2A receptor occupancy and gene expression in the pig

Abstract

Psilocybin has in some studies shown promise as treatment of major depressive disorder and psilocybin therapy was in 2019 twice designated as breakthrough therapy by the U.S. Food and Drug Administration (FDA). A very particular feature is that ingestion of just a single dose of psilocybin is associated with lasting changes in personality and mood. The underlying molecular mechanism behind its effect is, however, unknown. In a translational pig model, we here present the effects of a single dose of psilocybin on pig behaviour, receptor occupancy and gene expression in the brain. An acute i.v. injection of 0.08 mg/kg psilocybin to awake female pigs induced characteristic behavioural changes in terms of headshakes, scratching and rubbing, lasting around 20 min. A similar dose was associated with a cerebral 5-HT2A receptor occupancy of 67%, as determined by positron emission tomography, and plasma psilocin levels were comparable to what in humans is associated with an intense psychedelic experience. We found that 19 genes were differentially expressed in prefrontal cortex one day after psilocybin injection, and 3 genes after 1 week. Gene Set Enrichment Analysis demonstrated that multiple immunological pathways were regulated 1 week after psilocybin exposure. This provides a framework for future investigations of the lasting molecular mechanisms induced by a single dose of psilocybin. In the light of an ongoing debate as to whether psilocybin is a safe treatment for depression and other mental illnesses, it is reassuring that our data suggest that any effects on gene expression are very modest.

Donovan, L. L., Johansen, J. V., Ros, N. F., Jaberi, E., Linnet, K., Johansen, S. S., Ozenne, B., Issazadeh-Navikas, S., Hansen, H. D., & Knudsen, G. M. (2021). Effects of a single dose of psilocybin on behaviour, brain 5-HT2A receptor occupancy and gene expression in the pig. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 42, 1–11. https://doi.org/10.1016/j.euroneuro.2020.11.013

Link to full text

Modulation of the functional connectome in major depressive disorder by ketamine therapy

Abstract

Background: Subanesthetic ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depression. How single and repeated ketamine treatment modulates the whole-brain functional connectome to affect clinical outcomes remains uncharacterized.

Methods: Data-driven whole brain functional connectivity (FC) analysis was used to identify the functional connections modified by ketamine treatment in patients with major depressive disorder (MDD). MDD patients (N = 61, mean age = 38, 19 women) completed baseline resting-state (RS) functional magnetic resonance imaging and depression symptom scales. Of these patients, n = 48 and n = 51, completed the same assessments 24 h after receiving one and four 0.5 mg/kg intravenous ketamine infusions. Healthy controls (HC) (n = 40, 24 women) completed baseline assessments with no intervention. Analysis of RS FC addressed effects of diagnosis, time, and remitter status.

Results: Significant differences (p < 0.05, corrected) in RS FC were observed between HC and MDD at baseline in the somatomotor network and between association and default mode networks. These disruptions in FC in MDD patients trended toward control patterns with ketamine treatment. Furthermore, following serial ketamine infusions, significant decreases in FC were observed between the cerebellum and salience network (SN) (p < 0.05, corrected). Patient remitters showed increased FC between the cerebellum and the striatum prior to treatment that decreased following treatment, whereas non-remitters showed the opposite pattern.

Conclusion: Results support that ketamine treatment leads to neurofunctional plasticity between distinct neural networks that are shown as disrupted in MDD patients. Cortico-striatal-cerebellar loops that encompass the SN could be a potential biomarker for ketamine treatment.

Sahib, A. K., Loureiro, J. R., Vasavada, M., Anderson, C., Kubicki, A., Wade, B., Joshi, S. H., Woods, R. P., Congdon, E., Espinoza, R., & Narr, K. L. (2020). Modulation of the functional connectome in major depressive disorder by ketamine therapy. Psychological medicine, 1–10. Advance online publication. https://doi.org/10.1017/S0033291720004560

Link to full text

Psychedelic-assisted therapy for functional neurological disorders: A theoretical framework and review of prior reports

Abstract

Functional neurological disorders (FNDs), which are sometimes also referred to as psychogenic neurological disorders or conversion disorder, are common disabling neuropsychiatric disorders with limited treatment options. FNDs can present with sensory and/or motor symptoms, and, though they may mimic other neurological conditions, they are thought to occur via mechanisms other than those related to identifiable structural neuropathology and, in many cases, appear to be triggered and sustained by recognizable psychological factors. There is intriguing preliminary evidence to support the use of psychedelic-assisted therapy in a growing number of psychiatric illnesses, including FNDs. We review the theoretical arguments for and against exploring psychedelic-assisted therapy as a treatment for FNDs. We also provide an in-depth discussion of prior published cases detailing the use of psychedelics for psychosomatic conditions, analyzing therapeutic outcomes from a contemporary neuroscientific vantage as informed by several recent neuroimaging studies on psychedelics and FNDs.

Stewart, B., Dean, J. G., Koek, A., Chua, J., Wabl, R., Martin, K., Davoodian, N., Becker, C., Himedan, M., Kim, A., Albin, R., Chou, K. L., & Kotagal, V. (2020). Psychedelic-assisted therapy for functional neurological disorders: A theoretical framework and review of prior reports. Pharmacology research & perspectives, 8(6), e00688. https://doi.org/10.1002/prp2.688

Link to full text

Hallucinations Under Psychedelics and in the Schizophrenia Spectrum: An Interdisciplinary and Multiscale Comparison

Abstract

The recent renaissance of psychedelic science has reignited interest in the similarity of drug-induced experiences to those more commonly observed in psychiatric contexts such as the schizophrenia-spectrum. This report from a multidisciplinary working group of the International Consortium on Hallucinations Research (ICHR) addresses this issue, putting special emphasis on hallucinatory experiences. We review evidence collected at different scales of understanding, from pharmacology to brain-imaging, phenomenology and anthropology, highlighting similarities and differences between hallucinations under psychedelics and in the schizophrenia-spectrum disorders. Finally, we attempt to integrate these findings using computational approaches and conclude with recommendations for future research.

Leptourgos, P., Fortier-Davy, M., Carhart-Harris, R., Corlett, P. R., Dupuis, D., Halberstadt, A. L., Kometer, M., Kozakova, E., LarØi, F., Noorani, T. N., Preller, K. H., Waters, F., Zaytseva, Y., & Jardri, R. (2020). Hallucinations Under Psychedelics and in the Schizophrenia Spectrum: An Interdisciplinary and Multiscale Comparison. Schizophrenia bulletin, 46(6), 1396–1408. https://doi.org/10.1093/schbul/sbaa117

Link to full text

Corticosterone as a Potential Confounding Factor in Delineating Mechanisms Underlying Ketamine’s Rapid Antidepressant Actions

Abstract

Recent research into the rapid antidepressant effect of subanesthetic doses of ketamine have identified a series of relevant protein cascades activated within hours of administration. Prior to, or concurrent with, these activation cascades, ketamine treatment generates dissociative and psychotomimetic side effects along with an increase in circulating glucocorticoids. In rats, we observed an over 3-fold increase in corticosterone levels in both serum and brain tissue, within an hour of administration of low dose ketamine (10 mg/kg), but not with (2R, 6R)-hydroxynorketamine (HNK) (10 mg/kg), a ketamine metabolite shown to produce antidepressant-like action in rodents without inducing immediate side-effects. Hippocampal tissue from ketamine, but not HNK, injected animals displayed a significant increase in the expression of sgk1, a downstream effector of glucocorticoid receptor signaling. To examine the role conscious sensation of ketamine’s side effects plays in the release of corticosterone, we assessed serum corticosterone levels after ketamine administration while under isoflurane anesthesia. Under anesthesia, ketamine failed to increase circulating corticosterone levels relative to saline controls. Concurrent with its antidepressant effects, ketamine generates a release of glucocorticoids potentially linked to disturbing cognitive side effects and the activation of distinct molecular pathways which should be considered when attempting to delineate the molecular mechanisms of its antidepressant function.

Wegman-Points, L., Pope, B., Zobel-Mask, A., Winter, L., Wauson, E., Duric, V., & Yuan, L. L. (2020). Corticosterone as a Potential Confounding Factor in Delineating Mechanisms Underlying Ketamine’s Rapid Antidepressant Actions. Frontiers in pharmacology, 11, 590221. https://doi.org/10.3389/fphar.2020.590221

Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Management of Psychedelic-Related Complications - Online Event - Nov 20th