OPEN Foundation

A Dendrite-Focused Framework for Understanding the Actions of Ketamine and Psychedelics

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email


Pilot studies have hinted that serotonergic psychedelics such as psilocybin may relieve depression, and could possibly do so by promoting neural plasticity. Intriguingly, another psychotomimetic compound, ketamine, is a fast-acting antidepressant and induces synapse formation. The similarities in behavioral and neural effects have been puzzling because the compounds target distinct molecular receptors in the brain. In this opinion article, we develop a conceptual framework that suggests the actions of ketamine and serotonergic psychedelics may converge at the dendrites, to both enhance and suppress membrane excitability. We speculate that mismatches in the opposing actions on dendritic excitability may relate to these compounds’ cell-type and region selectivity, their moderate range of effects and toxicity, and their plasticity-promoting capacities.

Savalia, N. K., Shao, L. X., & Kwan, A. C. (2021). A Dendrite-Focused Framework for Understanding the Actions of Ketamine and Psychedelics. Trends in neurosciences, 44(4), 260–275.

Link to full text

OPEN Foundation


Subscribe to the OPEN Foundation’s newsletter to stay in the loop, hear about our events, and become a part of a community dedicated to advancing psychedelics.

By clicking subscribe, I confirm to receive emails from the OPEN Foundation and agree with its privacy policy.