OPEN Foundation

Y. Ren

Intravenous Ketamine for Adolescents with Treatment-Resistant Depression: An Open-Label Study

Abstract

BACKGROUND:

Novel interventions for treatment-resistant depression (TRD) in adolescents are urgently needed. Ketamine has been studied in adults with TRD, but little information is available for adolescents. This study investigated efficacy and tolerability of intravenous ketamine in adolescents with TRD, and explored clinical response predictors.

METHODS:

Adolescents, 12-18 years of age, with TRD (failure to respond to two previous antidepressant trials) were administered six ketamine (0.5 mg/kg) infusions over 2 weeks. Clinical response was defined as a 50% decrease in Children’s Depression Rating Scale-Revised (CDRS-R); remission was CDRS-R score ≤28. Tolerability assessment included monitoring vital signs and dissociative symptoms using the Clinician-Administered Dissociative States Scale (CADSS).

RESULTS:

Thirteen participants (mean age 16.9 years, range 14.5-18.8 years, eight biologically male) completed the protocol. Average decrease in CDRS-R was 42.5% (p = 0.0004). Five (38%) adolescents met criteria for clinical response. Three responders showed sustained remission at 6-week follow-up; relapse occurred within 2 weeks for the other two responders. Ketamine infusions were generally well tolerated; dissociative symptoms and hemodynamic symptoms were transient. Higher dose was a significant predictor of treatment response.

CONCLUSIONS:

These results demonstrate the potential role for ketamine in treating adolescents with TRD. Limitations include the open-label design and small sample; future research addressing these issues are needed to confirm these results. Additionally, evidence suggested a dose-response relationship; future studies are needed to optimize dose. Finally, questions remain regarding the long-term safety of ketamine as a depression treatment; more information is needed before broader clinical use.

Cullen, K. R., Amatya, P., Roback, M. G., Albott, C. S., Westlund Schreiner, M., Ren, Y., … & Reigstad, K. (2018). Intravenous Ketamine for Adolescents with Treatment-Resistant Depression: An Open-Label Study. Journal of child and adolescent psychopharmacology28(7), 437-444., 10.1089/cap.2018.0030

Link to full text

Intravenous Ketamine for Adolescents with Treatment-Resistant Depression: An Open-Label Study Read More »

Harmines inhibit cancer cell growth through coordinated activation of apoptosis and inhibition of autophagy

Abstract

Harmine and its analogs have long been considered as anticancer agents. In vitro analyses suggested that intercalating DNA or inhibiting topoisomerase might contribute to the cytotoxic effect of this class of compound. However, this idea has not been rigorously tested in intact cells. By synthesizing novel derivatives, here we demonstrate that harmines did not activate the DNA damage response, a cellular signaling commonly induced by agents that intercalate DNA or inhibit topoisomerase. These findings suggest that mechanisms other than DNA intercalating or topoisomerase inhibiting contribute to the toxicity of harmines in vivo. Using a novel N2-benzyl and N9-arylated alkyl compound 10f that has good solubility and stability as the model, we show that harmines strongly inhibited the growth of cancer cells originated from breast, lung, bone and pancreas, but not that of normal fibroblasts. We further show that 10f induced apoptosis and inhibited autophagy in a dose and time-dependent manner. An apoptosis inhibitor suppressed 10f-induced cell death. Together, our results reveal previously unidentified insights into the anticancer mechanism of harmines, supporting future development of this compound class in the treatment of human cancers.
Geng, X., Ren, Y., Wang, F., Tian, D., Yao, X., Zhang, Y., & Tang, J. (2018). Harmines inhibit cancer cell growth through coordinated activation of apoptosis and inhibition of autophagy. Biochemical and biophysical research communications498(1), 99-104. 10.1016/j.bbrc.2018.02.205
Link to full text

Harmines inhibit cancer cell growth through coordinated activation of apoptosis and inhibition of autophagy Read More »

Crafting Music for Altered States and Psychedelic Spaces - Online Event - Jan 22