OPEN Foundation

R. Moran

LSD modulates effective connectivity and neural adaptation mechanisms in an auditory oddball paradigm

Abstract

Under the predictive coding framework, perceptual learning and inference are dependent on the interaction between top-down predictions and bottom-up sensory signals both between and within regions in a network. However, how such feedback and feedforward connections are modulated in the state induced by lysergic acid diethylamide (LSD) is poorly understood. In this study, an auditory oddball paradigm was presented to healthy participants (16 males, 4 female) under LSD and placebo, and brain activity was recorded using magnetoencephalography (MEG). Scalp level Event Related Fields (ERF) revealed reduced neural adaptation to familiar stimuli, and a blunted neural ‘surprise’ response to novel stimuli in the LSD condition. Dynamic causal modelling revealed that both the presentation of novel stimuli and LSD modulate backward extrinsic connectivity within a task-activated fronto-temporal network, as well as intrinsic connectivity in the primary auditory cortex. These findings show consistencies with those of previous studies of schizophrenia and ketamine but also studies of reduced consciousness – suggesting that rather than being a marker of conscious level per se, backward connectivity may index modulations of perceptual learning common to a variety of altered states of consciousness, perhaps united by a shared altered sensitivity to environmental stimuli. Since recent evidence suggests that the psychedelic state may correspond to a heightened ‘level’ of consciousness with respect to the normal waking state, our data warrant a re-examination of the top-down hypotheses of conscious level and suggest that several altered states may feature this specific biophysical effector.
Timmermann, C., Spriggs, M. J., Kaelen, M., Leech, R., Nutt, D. J., Moran, R. J., … & Muthukumaraswamy, S. D. (2017). LSD modulates effective connectivity and neural adaptation mechanisms in an auditory oddball paradigm. Neuropharmacology. 10.1016/j.neuropharm.2017.10.039
Link to full text

Broadband cortical desynchronization underlies the human psychedelic state

Abstract

Psychedelic drugs produce profound changes in consciousness, but the underlying neurobiological mechanisms for this remain unclear. Spontaneous and induced oscillatory activity was recorded in healthy human participants with magnetoencephalography after intravenous infusion of psilocybin—prodrug of the nonselective serotonin 2A receptor agonist and classic psychedelic psilocin. Psilocybin reduced spontaneous cortical oscillatory power from 1 to 50 Hz in posterior association cortices, and from 8 to 100 Hz in frontal association cortices. Large decreases in oscillatory power were seen in areas of the default-mode network. Independent component analysis was used to identify a number of resting-state networks, and activity in these was similarly decreased after psilocybin. Psilocybin had no effect on low-level visually induced and motor-induced gamma-band oscillations, suggesting that some basic elements of oscillatory brain activity are relatively preserved during the psychedelic experience. Dynamic causal modeling revealed that posterior cingulate cortex desynchronization can be explained by increased excitability of deep-layer pyramidal neurons, which are known to be rich in 5-HT2A receptors. These findings suggest that the subjective effects of psychedelics result from a desynchronization of ongoing oscillatory rhythms in the cortex, likely triggered by 5-HT2A receptor-mediated excitation of deep pyramidal cells.

Muthukumaraswamy, S. D., Carhart-Harris, R. L., Moran, R. J., Brookes, M. J., Williams, T. M., Errtizoe, D., … & Feilding, A. (2013). Broadband cortical desynchronization underlies the human psychedelic state. The Journal of Neuroscience, 33(38), 15171-15183. 10.1523/JNEUROSCI.2063-13.2013
Link to full text

Crafting Music for Altered States and Psychedelic Spaces - Online Event - Jan 22nd