OPEN Foundation

M. Mehta

Receptor-Enriched Analysis of functional connectivity by targets (REACT): A novel, multimodal analytical approach informed by PET to study the pharmacodynamic response of the brain under MDMA

Abstract

One of the main limitations of pharmacological fMRI is its inability to provide a molecular insight into the main effect of compounds, leaving an open question about the relationship between drug effects and haemodynamic response. The aim of this study is to investigate the acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on functional connectivity (FC) using a novel multimodal method (Receptor-Enriched Analysis of functional Connectivity by Targets – REACT). This approach enriches the resting state (rs-)fMRI analysis with the molecular information about the distribution density of serotonin receptors in the brain, given the serotonergic action of MDMA. Twenty healthy subjects participated in this double-blind, placebo-controlled, crossover study. A high-resolution in vivo atlas of four serotonin receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4) and its transporter (5-HTT) was used as a template in a two-step multivariate regression analysis to estimate the spatial maps reflecting the whole-brain connectivity behaviour related to each target under placebo and MDMA. Results showed that the networks exhibiting significant changes after MDMA administration are the ones informed by the 5-HTT and 5-HT1Adistribution density maps, which are the main targets of this compound. Changes in the 5-HT1A-enriched functional maps were also associated with the pharmacokinetic levels of MDMA and MDMA-induced FC changes in the 5-HT2A-enriched maps correlated with the spiritual experience subscale of the Altered States of Consciousness Questionnaire. By enriching the rs-fMRI analysis with molecular data of voxel-wise distribution of the serotonin receptors across the brain, we showed that MDMA effects on FC can be understood through the distribution of its main targets. This result supports the ability of this method to characterise the specificity of the functional response of the brain to MDMA binding to serotonergic receptors, paving the way to the definition of a new fingerprint in the characterization of new compounds and potentially to a further understanding to the response to treatment.

Dipasquale, O., Selvaggi, P., Veronese, M., Gabay, A. S., Turkheimer, F., & Mehta, M. A. (2019). Receptor-Enriched Analysis of functional connectivity by targets (REACT): A novel, multimodal analytical approach informed by PET to study the pharmacodynamic response of the brain under MDMA. NeuroImage195, 252-260., 10.1016/j.neuroimage.2019.04.007

Link to full text

Psilocybin and MDMA reduce costly punishment in the Ultimatum Game

Abstract

Disruptions in social decision-making are becoming evident in many psychiatric conditions. These are studied using paradigms investigating the psychological mechanisms underlying interpersonal interactions, such as the Ultimatum Game (UG). Rejection behaviour in the UG represents altruistic punishment – the costly punishment of norm violators – but the mechanisms underlying it require clarification. To investigate the psychopharmacology of UG behaviour, we carried out two studies with healthy participants, employing serotonergic agonists: psilocybin (open-label, within-participant design, N = 19) and 3,4-methylenedioxymethamphetamine (MDMA; placebo-controlled, double-blind, crossover design, N = 20). We found that both MDMA and psilocybin reduced rejection of unfair offers (odds ratio: 0.57 and 0.42, respectively). The reduction in rejection rate following MDMA was associated with increased prosociality (R2 = 0.26, p = 0.025). In the MDMA study, we investigated third-party decision-making and proposer behaviour. MDMA did not reduce rejection in the third-party condition, but produced an increase in the amount offered to others (Cohen’s d = 0.82). We argue that these compounds altered participants’ conceptualisation of ‘social reward’, placing more emphasis on the direct relationship with interacting partners. With these compounds showing efficacy in drug-assisted psychotherapy, these studies are an important step in the further characterisation of their psychological effects.
Gabay, A. S., Carhart-Harris, R. L., Mazibuko, N., Kempton, M. J., Morrison, P. D., Nutt, D. J., & Mehta, M. A. (2018). Psilocybin and MDMA reduce costly punishment in the Ultimatum Game. Scientific reports8(1), 8236. 10.1038/s41598-018-26656-2
Link to full text

Perceptual distortions and delusional thinking following ketamine administration are related to increased pharmacological MRI signal changes in the parietal lobe

Abstract

Ketamine produces effects in healthy humans that resemble the positive, negative and cognitive symptoms of schizophrenia. We investigated the effect of ketamine administration on brain activity as indexed by blood-oxygen-level-dependent (BOLD) signal change response, and its relationship to ketamine-induced subjective changes, including perceptual distortion. Thirteen healthy participants volunteered for the study. All underwent a 15-min functional MRI acquisition with a ketamine infusion commencing after 5 min (approx 0.26 mg/kg over 20s followed by an infusion of approx. 0.42 mg/kg/h). Following the scan, participants self-rated ketamine-induced effects using the Psychotomimetic States Inventory. Ketamine led to widespread cortical and subcortical increases in BOLD response (FWE-corrected p < 0.01). Self-rated perceptual distortions and delusional thoughts correlated with increased BOLD response in the paracentral lobule (FWE-corrected p < 0.01). The findings suggest that BOLD increases in parietal cortices reflect ketamine effects on circuits that contribute to its capacity to produce perceptual alterations and delusional interpretations.

Stone, J., Kotoula, V., Dietrich, C., De Simoni, S., Krystal, J. H., & Mehta, M. A. (2015). Perceptual distortions and delusional thinking following ketamine administration are related to increased pharmacological MRI signal changes in the parietal lobe. Journal of Psychopharmacology, 0269881115592337. https://dx.doi.org/
Link to full text

Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile

Abstract

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been studied in relation to the glutamate hypothesis of schizophrenia and increases dissociation, positive and negative symptom ratings. Ketamine effects brain function through changes in brain activity; these activity patterns can be modulated by pre-treatment of compounds known to attenuate the effects of ketamine on glutamate release. Ketamine also has marked effects on brain connectivity; we predicted that these changes would also be modulated by compounds known to attenuate glutamate release. Here, we perform task-free pharmacological magnetic resonance imaging (phMRI) to investigate the functional connectivity effects of ketamine in the brain and the potential modulation of these effects by pre-treatment of the compounds lamotrigine and risperidone, compounds hypothesised to differentially modulate glutamate release. Connectivity patterns were assessed by combining windowing, graph theory and multivariate Gaussian process classification. We demonstrate that ketamine has a robust effect on the functional connectivity of the human brain compared to saline (87.5 % accuracy). Ketamine produced a shift from a cortically centred, to a subcortically centred pattern of connections. This effect is strongly modulated by pre-treatment with risperidone (81.25 %) but not lamotrigine (43.75 %). Based on the differential effect of these compounds on ketamine response, we suggest the observed connectivity effects are primarily due to NMDAR blockade rather than downstream glutamatergic effects. The connectivity changes contrast with amplitude of response for which no differential effect between pre-treatments was detected, highlighting the necessity of these techniques in forming an informed view of the mechanistic effects of pharmacological compounds in the human brain.

Joules, R., Doyle, O. M., Schwarz, A. J., O’Daly, O. G., Brammer, M., Williams, S. C., & Mehta, M. A. (2015). Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile. Psychopharmacology, 1-14. https://dx.doi.org/10.1007/s00213-015-3951-9

Link to full text

Crafting Music for Altered States and Psychedelic Spaces - Online Event - Jan 22nd