OPEN Foundation

J. Webster

Discriminative Stimulus Properties of MDMA: The Role of Serotonin and Dopamine

Abstract

Rationale: ±3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) produces unique and complex subjective effects which distinguish it from other recreationally used drugs. An understanding of the neurochemical mechanisms that underlie these effects is important in order to assess the potential for MDMA abuse and to inform researchers exploring of the drug’s therapeutic potential. The present thesis investigated the neurochemical mechanisms underlying the subjective effects of MDMA using drug discrimination procedures in laboratory animals. Despite evidence that training dose can markedly impact the results of drug discrimination studies, the impact of training dose on the discriminative stimulus properties of MDMA has been largely overlooked. The broad aims of these experiments were 1) to test the ability of two different doses of MDMA to support drug discrimination learning, and 2) to determine the role of serotonin (5-HT) and dopamine (DA) neurotransmitter systems in producing the discriminative stimulus effects of each MDMA training dose. 

Methods: Groups of rats were trained to discriminate MDMA (1.5 or 3.0 mg/kg) from saline or to discriminate MDMA (1.5 or 3.0 mg/kg) from amphetamine (0.5 mg/kg) and saline, using two- or three-lever, food-reinforced drug discrimination procedures. The first experiments determined the impact of training dose on the acquisition of the MDMA discrimination. Reliability of the discrimination was assessed by measuring the impact of changes in acquisition criteria. Once the discrimination had been acquired, generalisation tests were carried out in two-lever experiments with the SSRIs, fluoxetine and clomipramine, the 5-HT2 agonists, mCPP and DOI, and the 5-HT1 agonists, 8-OH-DPAT and RU-24969, to investigate the role of 5-HT in the discriminative stimulus effects of 1.5 mg/kg vs 3.0 mg/kg MDMA. Next, the role of DA was investigated in further generalisation test sessions with the DA releasing stimulant, AMPH, the non-selective D1/D2 agonist, apomorphine, the D1 agonist, SKF38393, and the D2 agonist, quinpirole. Finally, experiments were carried out in which the ability of the 5-HT2A antagonist, ketanserin, the 5-HT1B/1D antagonist, GR-127935, the 5-HT1A antagonist, WAY100635, the D1 antagonist, SCH23390, and the D2 antagonist, eticlopride, to attenuate the discriminative stimulus effects of 1.5 mg/kg vs 3.0 mg/kg MDMA was assessed.

Results: A higher training dose of MDMA was associated with a more rapid acquisition of drug discrimination in both the two- and three-lever tasks, and significant differences were observed with respect to the ability of each dose of MDMA to maintain consistently accurate discrimination across both tasks. All of the serotonin agonists that were tested generalised to the discriminative stimulus effects of 1.5 mg/kg MDMA in a two-lever discrimination task. In contrast, only agonists for 5-HT1A or 5-HT2A receptors generalised to the discriminative stimulus effects of 3.0 mg/kg MDMA. Non-selective dopamine agonists generalised to the discriminative stimulus effects of 3.0 mg/kg but not 1.5 mg/kg MDMA, whereas selective D1 and D2 agonists failed to generalise to the discriminative stimulus effects of either training dose. None of the DA or 5-HT antagonists tested had a marked impact of the discrimination of 1.5 mg/kg MDMA whereas administration of a D2 antagonist produced a small but significant attenuation on the discriminative stimulus effects of 3.0 mg/kg MDMA.

Conclusions: The results of the present thesis suggest that the discriminative stimulus effects of MDMA may change both quantitatively and qualitatively as a function of dose. The subjective effects produced by lower doses appear to be mediated primarily via serotonergic mechanisms, whereas higher doses may involve the additional recruitment of dopaminergic mechanisms. These findings have implications for our understanding of MDMA in terms of the drug’s potential for dependence and abuse.

Webster, J. (2016). Discriminative Stimulus Properties of MDMA: The Role of Serotonin and Dopamine. 10063/5622

Link to full text

Serotonin antagonists fail to alter MDMA self-administration in rats

Abstract

Acute exposure to ±3,4-methylenedioxymethamphetamine (MDMA) preferentially increases release of serotonin (5-HT), and a role of 5-HT in many of the behavioral effects of acute exposure to MDMA has been demonstrated. A role of 5-HT in MDMA self-administration in rats has not, however, been adequately determined. Therefore, the present study measured the effect of pharmacological manipulation of some 5-HT receptor subtypes on self-administration of MDMA. Rats received extensive experience with self-administered MDMA prior to tests with 5-HT ligands. Doses of the 5-HT1A antagonist, WAY 100635 (0.1-1.0mg/kg), 5-HT1B antagonist, GR 127935 (1.0-3.0mg/kg), and the 5-HT2A antagonist, ketanserin (1.0-3.0mg/kg) that have previously been shown to decrease self-administration of other psychostimulants and that decreased MDMA-produced hyperactivity in the present study did not alter MDMA self-administration. Experimenter-administered injections of MDMA (10.0mg/kg, ip) reinstated extinguished drug-taking behavior, but this also was not decreased by any of the antagonists. In contrast, both WAY 100635 and ketanserin, but not GR 127935, decreased cocaine-produced drug seeking in rats that had been trained to self-administered cocaine. The 5-HT1A agonist, 8-OH-DPAT (0.1-1.0mg/kg), but not the 5-HT1B/1A agonist, RU 24969 (0.3-3.0mg/kg), decreased drug-seeking produced by the reintroduction of a light stimulus that had been paired with self-administered MDMA infusions. These findings suggest a limited role of activation of 5-HT1A, 5-HT1B or 5-HT2 receptor mechanisms in MDMA self-administration or in MDMA-produced drug-seeking following extinction. The data suggest, however, that 5-HT1A agonists inhibit cue-induced drug-seeking following extinction of MDMA self-administration and might, therefore, be useful adjuncts to therapies to limit relapse to MDMA use.

Schenk, S., Foote, J., Aronsen, D., Bukholt, N., Highgate, Q., Van de Wetering, R., & Webster, J. (2016). Serotonin antagonists fail to alter MDMA self-administration in rats. Pharmacology Biochemistry and Behavior. http://dx.doi.org/10.1016/j.pbb.2016.06.002

Link to full text

30 April - Q&A with Rick Strassman

X