OPEN Foundation

Scienitific Discipline

Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms

Abstract

Psilocybin with psychological support is showing promise as a treatment model in psychiatry but its therapeutic mechanisms are poorly understood. Here, cerebral blood flow (CBF) and blood oxygen-level dependent (BOLD) resting-state functional connectivity (RSFC) were measured with functional magnetic resonance imaging (fMRI) before and after treatment with psilocybin (serotonin agonist) for treatment-resistant depression (TRD). Quality pre and post treatment fMRI data were collected from 16 of 19 patients. Decreased depressive symptoms were observed in all 19 patients at 1-week post-treatment and 47% met criteria for response at 5 weeks. Whole-brain analyses revealed post-treatment decreases in CBF in the temporal cortex, including the amygdala. Decreased amygdala CBF correlated with reduced depressive symptoms. Focusing on a priori selected circuitry for RSFC analyses, increased RSFC was observed within the default-mode network (DMN) post-treatment. Increased ventromedial prefrontal cortex-bilateral inferior lateral parietal cortex RSFC was predictive of treatment response at 5-weeks, as was decreased parahippocampal-prefrontal cortex RSFC. These data fill an important knowledge gap regarding the post-treatment brain effects of psilocybin, and are the first in depressed patients. The post-treatment brain changes are different to previously observed acute effects of psilocybin and other ‘psychedelics’ yet were related to clinical outcomes. A ‘reset’ therapeutic mechanism is proposed.
Carhart-Harris, R. L., Roseman, L., Bolstridge, M., Demetriou, L., Pannekoek, J. N., Wall, M. B., … & Leech, R. (2017). Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Scientific reports7(1), 13187. 10.1038/s41598-017-13282-7
Link to full text

Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT

Abstract

Dimethyltryptamines are entheogenic serotonin-like molecules present in traditional Amerindian medicine recently associated with cognitive gains, antidepressant effects, and changes in brain areas related to attention. Legal restrictions and the lack of adequate experimental models have limited the understanding of how such substances impact human brain metabolism. Here we used shotgun mass spectrometry to explore proteomic differences induced by 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) on human cerebral organoids. Out of the 6,728 identified proteins, 934 were found differentially expressed in 5-MeO-DMT-treated cerebral organoids. In silico analysis reinforced previously reported anti-inflammatory actions of 5-MeO-DMT and revealed modulatory effects on proteins associated with long-term potentiation, the formation of dendritic spines, including those involved in cellular protrusion formation, microtubule dynamics, and cytoskeletal reorganization. Our data offer the first insight about molecular alterations caused by 5-MeO-DMT in human cerebral organoids.
Dakic, V., Nascimento, J. M., Sartore, R. C., de Moraes Maciel, R., Araujo, D. B., Ribeiro, S., … & Rehen, S. K. (2017). Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Scientific Reports7(1), 12863. 10.1038/s41598-017-12779-5
Link to full text

Separating the agony from ecstasy: R(-)-3,4-methylenedioxymethamphetamine has prosocial and therapeutic-like effects without signs of neurotoxicity in mice

Abstract

S,R(+/-)-3,4-methylenedioxymethamphetamine (SR-MDMA) is an amphetamine derivative with prosocial and putative therapeutic effects. Ongoing clinical trials are investigating it as a treatment for post-traumatic stress disorder (PTSD) and other conditions. However, its potential for adverse effects such as hyperthermia and neurotoxicity may limit its clinical viability. We investigated the hypothesis that one of the two enantiomers of SR-MDMA, R-MDMA, would retain the prosocial and therapeutic effects but with fewer adverse effects. Using male Swiss Webster and C57BL/6 mice, the prosocial effects of R-MDMA were measured using a social interaction test, and the therapeutic-like effects were assessed using a Pavlovian fear conditioning and extinction paradigm relevant to PTSD. Locomotor activity and body temperature were tracked after administration, and neurotoxicity was evaluated post-mortem. R-MDMA significantly increased murine social interaction and facilitated extinction of conditioned freezing. Yet, unlike racemic MDMA, it did not increase locomotor activity, produce signs of neurotoxicity, or increase body temperature. A key pharmacological difference between R-MDMA and racemic MDMA is that R-MDMA has much lower potency as a dopamine releaser. Pretreatment with a selective dopamine D1 receptor antagonist prevented SR-MDMA-induced hyperthermia, suggesting that differential dopamine signaling may explain some of the observed differences between the treatments. Together, these results indicate that the prosocial and therapeutic effects of SR-MDMA may be separable from the stimulant, thermogenic, and potential neurotoxic effects. To what extent these findings translate to humans will require further investigation, but these data suggest that R-MDMA could be a more viable therapeutic option for the treatment of PTSD and other disorders for which SR-MDMA is currently being investigated.
Curry, D. W., Young, M. B., Tran, A. N., Daoud, G. E., & Howell, L. L. (2018). Separating the agony from ecstasy: R (–)-3, 4-methylenedioxymethamphetamine has prosocial and therapeutic-like effects without signs of neurotoxicity in mice. Neuropharmacology128, 196-206. 10.1016/j.neuropharm.2017.10.003
Link to full text

Salvinorin A reduces neuropathic nociception in the insular cortex of the rat

Abstract

BACKGROUND:
Neuropathic pain is one of the most important challenges in public health. The search for novel treatments is important for an adequate relief without adverse effects. In this sense salvinorin A (SA), the main diterpene of the medicinal plant Salvia divinorum is an important antinociceptive compound, which acts as a potent agonist of kappa opioid receptor (KOR) and cannabinoid CB1 receptors.
METHODS:
We evaluated nociceptive responses in a neuropathic pain model induced by the sciatic nerve ligature (SNL) in the right hind paw, after the microinjection of SA, Salvinorin B (SB), KOR and CB1 antagonists directly in the insular cortex (IC) in male wistar rats.
RESULTS:
We found a potent antinociceptive effect with the administration of SA. Moreover, this effect was blocked by the administration of a KOR antagonist as well as the administration of a CB1 antagonist.
CONCLUSION:
Salvinorin A has a potent antinociceptive effect when is administered centrally in the IC by the interaction with KOR and CB1 receptors.
SIGNIFICANCE:
We show evidence on the effectiveness of the administration of salvinorin A in the IC in a rodent model of neuropathic pain. These results support the use of novel compounds like SA as a therapeutic alternative for neuropathic pain relief.
Coffeen, U., Canseco‐Alba, A., Simón‐Arceo, K., Almanza, A., Mercado, F., León‐Olea, M., & Pellicer, F. (2017). Salvinorin A reduces neuropathic nociception in the insular cortex of the rat. European Journal of Pain. 10.1002/ejp.1120
Link to full text

A retrospective study of ketamine administration and the development of acute or post-traumatic stress disorder in 274 war-wounded soldiers

Abstract

The objective of this study was to explore whether ketamine prevents or exacerbates acute or post-traumatic stress disorders in military trauma patients. We conducted a retrospective study of a database from the French Military Health Service, including all soldiers surviving a war injury in Afghanistan (2010-2012). The diagnosis of post-traumatic stress disorder was made by a psychiatrist and patients were analysed according to the presence or absence of this condition. Analysis included the following covariables: age; sex; acute stress disorder; blast injury; associated fatality; brain injury; traumatic amputation; Glasgow coma scale; injury severity score; administered drugs; number of surgical procedures; physical, neurosensory or aesthetic sequelae; and the development chronic pain. Covariables related to post-traumatic and acute stress disorders with a p ≤ 0.10 were included in a multivariable logistic regression model. The data from 450 soldiers were identified; 399 survived, of which 274 were analysed. Among these, 98 (36%) suffered from post-traumatic stress disorder and 89 (32%) had received ketamine. Fifty-four patients (55%) in the post-traumatic stress disorder group received ketamine vs. 35 (20%) in the no PTSD group (p < 0.001). The 89 injured soldiers who received ketamine had a median (IQR [range]) injury severity score of 5 (3-13 [1-26]) vs. 3 (2-4 [1-6] in the 185 patients who did not (p < 0.001). At multivariable analysis, only acute stress disorder and total number of surgical procedures were independently associated with the development of post-traumatic stress disorder. In this retrospective study, ketamine administration was not a risk factor for the development of post-traumatic stress disorder in the military trauma setting.
Mion, G., Le Masson, J., Granier, C., & Hoffmann, C. (2017). A retrospective study of ketamine administration and the development of acute or post‐traumatic stress disorder in 274 war‐wounded soldiers. Anaesthesia. 10.1111/anae.14079
Link to full text

Acute LSD effects on response inhibition neural networks

Abstract

BACKGROUND:
Recent evidence shows that the serotonin 2A receptor (5-hydroxytryptamine2A receptor, 5-HT2AR) is critically involved in the formation of visual hallucinations and cognitive impairments in lysergic acid diethylamide (LSD)-induced states and neuropsychiatric diseases. However, the interaction between 5-HT2AR activation, cognitive impairments and visual hallucinations is still poorly understood. This study explored the effect of 5-HT2AR activation on response inhibition neural networks in healthy subjects by using LSD and further tested whether brain activation during response inhibition under LSD exposure was related to LSD-induced visual hallucinations.
METHODS:
In a double-blind, randomized, placebo-controlled, cross-over study, LSD (100 µg) and placebo were administered to 18 healthy subjects. Response inhibition was assessed using a functional magnetic resonance imaging Go/No-Go task. LSD-induced visual hallucinations were measured using the 5 Dimensions of Altered States of Consciousness (5D-ASC) questionnaire.
RESULTS:
Relative to placebo, LSD administration impaired inhibitory performance and reduced brain activation in the right middle temporal gyrus, superior/middle/inferior frontal gyrus and anterior cingulate cortex and in the left superior frontal and postcentral gyrus and cerebellum. Parahippocampal activation during response inhibition was differently related to inhibitory performance after placebo and LSD administration. Finally, activation in the left superior frontal gyrus under LSD exposure was negatively related to LSD-induced cognitive impairments and visual imagery.
CONCLUSION:
Our findings show that 5-HT2AR activation by LSD leads to a hippocampal-prefrontal cortex-mediated breakdown of inhibitory processing, which might subsequently promote the formation of LSD-induced visual imageries. These findings help to better understand the neuropsychopharmacological mechanisms of visual hallucinations in LSD-induced states and neuropsychiatric disorders.
Schmidt, A., Müller, F., Lenz, C., Dolder, P. C., Schmid, Y., Zanchi, D., … & Borgwardt, S. (2017). Acute LSD effects on response inhibition neural networks. Psychological Medicine, 1-13. 10.1017/S0033291717002914
Link to full text

The relationships of classic psychedelic use with criminal behavior in the United States adult population

Abstract

Criminal behavior exacts a large toll on society and is resistant to intervention. Some evidence suggests classic psychedelics may inhibit criminal behavior, but the extent of these effects has not been comprehensively explored. In this study, we tested the relationships of classic psychedelic use and psilocybin use per se with criminal behavior among over 480,000 United States adult respondents pooled from the last 13 available years of the National Survey on Drug Use and Health (2002 through 2014) while controlling for numerous covariates. Lifetime classic psychedelic use was associated with a reduced odds of past year larceny/theft (aOR = 0.73 (0.65-0.83)), past year assault (aOR = 0.88 (0.80-0.97)), past year arrest for a property crime (aOR = 0.78 (0.65-0.95)), and past year arrest for a violent crime (aOR = 0.82 (0.70-0.97)). In contrast, lifetime illicit use of other drugs was, by and large, associated with an increased odds of these outcomes. Lifetime classic psychedelic use, like lifetime illicit use of almost all other substances, was associated with an increased odds of past year drug distribution. Results were consistent with a protective effect of psilocybin for antisocial criminal behavior. These findings contribute to a compelling rationale for the initiation of clinical research with classic psychedelics, including psilocybin, in forensic settings.
Hendricks, P. S., Crawford, M. S., Cropsey, K. L., Copes, H., Sweat, N. W., Walsh, Z., & Pavela, G. (2017). The relationships of classic psychedelic use with criminal behavior in the United States adult population. Journal of Psychopharmacology, 0269881117735685.
Link to full text

N,N-dimethyltryptamine and the pineal gland: Separating fact from myth

Abstract

The pineal gland has a romantic history, from pharaonic Egypt, where it was equated with the eye of Horus, through various religious traditions, where it was considered the seat of the soul, the third eye, etc. Recent incarnations of these notions have suggested that N,N-dimethyltryptamine is secreted by the pineal gland at birth, during dreaming, and at near death to produce out of body experiences. Scientific evidence, however, is not consistent with these ideas. The adult pineal gland weighs less than 0.2 g, and its principal function is to produce about 30 µg per day of melatonin, a hormone that regulates circadian rhythm through very high affinity interactions with melatonin receptors. It is clear that very minute concentrations of N,N-dimethyltryptamine have been detected in the brain, but they are not sufficient to produce psychoactive effects. Alternative explanations are presented to explain how stress and near death can produce altered states of consciousness without invoking the intermediacy of N,N-dimethyltryptamine.
Nichols, D. E. (2017). N, N-dimethyltryptamine and the pineal gland: Separating fact from myth. Journal of Psychopharmacology, 0269881117736919.
Link to full text

The Mechanisms of Psychedelic Visionary Experiences: Hypotheses from Evolutionary Psychology

Abstract

Neuropharmacological effects of psychedelics have profound cognitive, emotional, and social effects that inspired the development of cultures and religions worldwide. Findings that psychedelics objectively and reliably produce mystical experiences press the question of the neuropharmacological mechanisms by which these highly significant experiences are produced by exogenous neurotransmitter analogs. Humans have a long evolutionary relationship with psychedelics, a consequence of psychedelics’ selective effects for human cognitive abilities, exemplified in the information rich visionary experiences. Objective evidence that psychedelics produce classic mystical experiences, coupled with the finding that hallucinatory experiences can be induced by many non-drug mechanisms, illustrates the need for a common model of visionary effects. Several models implicate disturbances of normal regulatory processes in the brain as the underlying mechanisms responsible for the similarities of visionary experiences produced by psychedelic and other methods for altering consciousness. Similarities in psychedelic-induced visionary experiences and those produced by practices such as meditation and hypnosis and pathological conditions such as epilepsy indicate the need for a general model explaining visionary experiences. Common mechanisms underlying diverse alterations of consciousness involve the disruption of normal functions of the prefrontal cortex and default mode network (DMN). This interruption of ordinary control mechanisms allows for the release of thalamic and other lower brain discharges that stimulate a visual information representation system and release the effects of innate cognitive functions and operators. Converging forms of evidence support the hypothesis that the source of psychedelic experiences involves the emergence of these innate cognitive processes of lower brain systems, with visionary experiences resulting from the activation of innate processes based in the mirror neuron system (MNS).
Winkelman, M. J. (2017). The Mechanisms of Psychedelic Visionary Experiences: Hypotheses from Evolutionary Psychology. Frontiers in Neuroscience11, 539. 10.3389/fnins.2017.00539
Link to full text

Serotonin 2A Receptor Signaling Underlies LSD-induced Alteration of the Neural Response to Dynamic Changes in Music

Abstract

Classic psychedelic drugs (serotonin 2A, or 5HT2A, receptor agonists) have notable effects on music listening. In the current report, blood oxygen level-dependent (BOLD) signal was collected during music listening in 25 healthy adults after administration of placebo, lysergic acid diethylamide (LSD), and LSD pretreated with the 5HT2A antagonist ketanserin, to investigate the role of 5HT2A receptor signaling in the neural response to the time-varying tonal structure of music. Tonality-tracking analysis of BOLD data revealed that 5HT2A receptor signaling alters the neural response to music in brain regions supporting basic and higher-level musical and auditory processing, and areas involved in memory, emotion, and self-referential processing. This suggests a critical role of 5HT2A receptor signaling in supporting the neural tracking of dynamic tonal structure in music, as well as in supporting the associated increases in emotionality, connectedness, and meaningfulness in response to music that are commonly observed after the administration of LSD and other psychedelics. Together, these findings inform the neuropsychopharmacology of music perception and cognition, meaningful music listening experiences, and altered perception of music during psychedelic experiences.
Barrett, F. S., Preller, K. H., Herdener, M., Janata, P., & Vollenweider, F. X. (2017). Serotonin 2A Receptor Signaling Underlies LSD-induced Alteration of the Neural Response to Dynamic Changes in Music. Cerebral Cortex, 1-12. 10.1093/cercor/bhx257
Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Psychedelic Care in Recreational Settings - Online Event - Oct 3rd