OPEN Foundation

Neuroscience

Ketamine Enhances Visual Sensory Evoked Potential Long-term Potentiation in Patients With Major Depressive Disorder

Abstract

Background: The rapid-acting clinical effects of ketamine as a novel treatment for depression along with its complex pharmacology have made it a growing research area. One of the key mechanistic hypotheses for how ketamine works to alleviate depression is by enhancing long-term potentiation (LTP)-mediated neural plasticity.

Methods: The objective of this study was to investigate the plasticity hypothesis in 30 patients with depression noninvasively using visual LTP as an index of neural plasticity. In a double-blind, active placebo-controlled crossover trial, electroencephalography-based LTP was recorded approximately 3 to 4 hours following a single 0.44-mg/kg intravenous dose of ketamine or active placebo (1.7 ng/mL remifentanil) in 30 patients. Montgomery-Åsberg Depression Rating Scale scores were used to measure clinical symptoms. Visual LTP was measured as a change in the visually evoked potential following high-frequency visual stimulation. Dynamic causal modeling investigated the underlying neural architecture of visual LTP and the contribution of ketamine.

Results: Montgomery-Åsberg Depression Rating Scale scores revealed that 70% of participants experienced 50% or greater reduction in their depression symptoms within 1 day of receiving ketamine. LTP was demonstrated in the N1 (p = .00002) and P2 (p = 2.31 × 10-11) visually evoked components. Ketamine specifically enhanced P2 potentiation compared with placebo (p = .017). Dynamic causal modeling replicated the recruitment of forward and intrinsic connections for visual LTP and showed complementary effects of ketamine indicative of downstream and proplasticity modulation.

Conclusions: This study provides evidence that LTP-based neural plasticity increases within the time frame of the antidepressant effects of ketamine in humans and supports the hypothesis that changes to neural plasticity may be key to the antidepressant properties of ketamine.

Sumner, R. L., McMillan, R., Spriggs, M. J., Campbell, D., Malpas, G., Maxwell, E., Deng, C., Hay, J., Ponton, R., Kirk, I. J., Sundram, F., & Muthukumaraswamy, S. D. (2020). Ketamine Enhances Visual Sensory Evoked Potential Long-term Potentiation in Patients With Major Depressive Disorder. Biological psychiatry. Cognitive neuroscience and neuroimaging, 5(1), 45–55. https://doi.org/10.1016/j.bpsc.2019.07.002

Link to full text

Harnessing Neuroimaging to Enhance Our Understanding of the Effects of Ketamine in Depression.

Jaworska, N., & Phillips, J. L. (2019). Harnessing Neuroimaging to Enhance Our Understanding of the Effects of Ketamine in Depression. Biological psychiatry. Cognitive neuroscience and neuroimaging4(7), 603., https://doi.org/10.1016/j.bpsc.2019.05.005
Link to full text

REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics.

Abstract

This paper formulates the action of psychedelics by integrating the free-energy principle and entropic brain hypothesis. We call this formulation relaxed beliefs under psychedelics (REBUS) and the anarchic brain, founded on the principle that-via their entropic effect on spontaneous cortical activity-psychedelics work to relax the precision of high-level priors or beliefs, thereby liberating bottom-up information flow, particularly via intrinsic sources such as the limbic system. We assemble evidence for this model and show how it can explain a broad range of phenomena associated with the psychedelic experience. With regard to their potential therapeutic use, we propose that psychedelics work to relax the precision weighting of pathologically overweighted priors underpinning various expressions of mental illness. We propose that this process entails an increased sensitization of high-level priors to bottom-up signaling (stemming from intrinsic sources), and that this heightened sensitivity enables the potential revision and deweighting of overweighted priors. We end by discussing further implications of the model, such as that psychedelics can bring about the revision of other heavily weighted high-level priors, not directly related to mental health, such as those underlying partisan and/or overly-confident political, religious, and/or philosophical perspectives. SIGNIFICANCE STATEMENT: Psychedelics are capturing interest, with efforts underway to bring psilocybin therapy to marketing authorisation and legal access within a decade, spearheaded by the findings of a series of phase 2 trials. In this climate, a compelling unified model of how psychedelics alter brain function to alter consciousness would have appeal. Towards this end, we have sought to integrate a leading model of global brain function, hierarchical predictive coding, with an often-cited model of the acute action of psychedelics, the entropic brain hypothesis. The resulting synthesis states that psychedelics work to relax high-level priors, sensitising them to liberated bottom-up information flow, which, with the right intention, care provision and context, can help guide and cultivate the revision of entrenched pathological priors.
Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics. Pharmacological reviews71(3), 316-344., https://doi.org/10.1124/pr.118.017160
Link to full text

Spectral signatures of serotonergic psychedelics and glutamatergic dissociatives

Abstract

Classic serotonergic psychedelics are remarkable for their capacity to induce reversible alterations in consciousness of the self and the surroundings, mediated by agonism at serotonin 5-HT2A receptors. The subjective effects elicited by dissociative drugs acting as N-methyl-D-aspartate (NMDA) antagonists (e.g. ketamine and phencyclidine) overlap in certain domains with those of serotonergic psychedelics, suggesting some potential similarities in the brain activity patterns induced by both classes of drugs, despite different pharmacological mechanisms of action. We investigated source-localized magnetoencephalography recordings to determine the frequency-specific changes in oscillatory activity and long-range functional coupling that are common to two serotonergic compounds (lysergic acid diethylamide [LSD] and psilocybin) and the NMDA-antagonist ketamine. Administration of the three drugs resulted in widespread and broadband spectral power reductions. We established their similarity by using different pairs of compounds to train and subsequently evaluate multivariate machine learning classifiers. After applying the same methodology to functional connectivity values, we observed a pattern of occipital, parietal and frontal decreases in the low alpha and theta bands that were specific to LSD and psilocybin, as well as decreases in the low beta band common to the three drugs. Our results represent a first effort in the direction of quantifying the similarity of large-scale brain activity patterns induced by drugs of different mechanism of action, confirming the link between changes in theta and alpha oscillations and 5-HT2A agonism, while also revealing the decoupling of activity in the beta band as an effect shared between NMDA antagonists and 5-HT2A agonists. We discuss how these frequency-specific convergences and divergences in the power and functional connectivity of brain oscillations might relate to the overlapping subjective effects of serotonergic psychedelics and glutamatergic dissociative compounds.

Pallavicini, C., Vilas, M. G., Villarreal, M., Zamberlan, F., Muthukumaraswamy, S., Nutt, D., … & Tagliazucchi, E. (2019). Spectral signatures of serotonergic psychedelics and glutamatergic dissociatives. NeuroImage., 10.1016/j.neuroimage.2019.06.053
Link to full text

REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics

Abstract

This paper formulates the action of psychedelics by integrating the free-energy principle and entropic brain hypothesis. We call this formulation relaxed beliefs under psychedelics (REBUS) and the anarchic brain, founded on the principle that—via their entropic effect on spontaneous cortical activity—psychedelics work to relax the precision of high-level priors or beliefs, thereby liberating bottom-up information flow, particularly via intrinsic sources such as the limbic system. We assemble evidence for this model and show how it can explain a broad range of phenomena associated with the psychedelic experience. With regard to their potential therapeutic use, we propose that psychedelics work to relax the precision weighting of pathologically overweighted priors underpinning various expressions of mental illness. We propose that this process entails an increased sensitization of high-level priors to bottom-up signaling (stemming from intrinsic sources), and that this heightened sensitivity enables the potential revision and deweighting of overweighted priors. We end by discussing further implications of the model, such as that psychedelics can bring about the revision of other heavily weighted high-level priors, not directly related to mental health, such as those underlying partisan and/or overly-confident political, religious, and/or philosophical perspectives.

Significance Statement Psychedelics are capturing interest, with efforts underway to bring psilocybin therapy to marketing authorisation and legal access within a decade, spearheaded by the findings of a series of phase 2 trials. In this climate, a compelling unified model of how psychedelics alter brain function to alter consciousness would have appeal. Towards this end, we have sought to integrate a leading model of global brain function, hierarchical predictive coding, with an often-cited model of the acute action of psychedelics, the entropic brain hypothesis. The resulting synthesis states that psychedelics work to relax high-level priors, sensitising them to liberated bottom-up information flow, which, with the right intention, care provision and context, can help guide and cultivate the revision of entrenched pathological priors.

Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics. Pharmacological reviews71(3), 316-344., /10.1124/pr.118.017160
Link to full text

Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective.

Abstract

Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment-resistant patients with MDD or BD. Accumulating evidence suggests that the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment-resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Because (S)-ketamine has higher affinity for NMDAR than (R)-ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)-ketamine exerts greater potency and longer-lasting antidepressant effects than (S)-ketamine in animal models of depression and that (R)-ketamine has less detrimental side-effects than (R,S)-ketamine or (S)-ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid-acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low-voltage-sensitive T-type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ-aminobutyric acid, and type A [GABAA ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine’s antidepressant effects are discussed
Hashimoto, K. (2019). Rapid‐acting Antidepressant Ketamine, Its Metabolites and Other Candidates: A Historical Overview and Future Perspective. Psychiatry and Clinical Neurosciences., https://doi.org/10.1111/pcn.12902
Link to full text

Modulation of Serum Brain-Derived Neurotrophic Factor by a Single Dose of Ayahuasca: Observation From a Randomized Controlled Trial.

Abstract

Serotonergic psychedelics are emerging as potential antidepressant therapeutic tools, as suggested in a recent randomized controlled trial with ayahuasca for treatment-resistant depression. Preclinical and clinical studies have suggested that serum brain-derived neurotrophic factor (BDNF) levels increase after treatment with serotoninergic antidepressants, but the exact role of BDNF as a biomarker for diagnostic and treatment of major depression is still poorly understood. Here we investigated serum BDNF levels in healthy controls (N = 45) and patients with treatment-resistant depression (N = 28) before (baseline) and 48 h after (D2) a single dose of ayahuasca or placebo. In our sample, baseline serum BDNF levels did not predict major depression and the clinical characteristics of the patients did not predict their BDNF levels. However, at baseline, serum cortisol was a predictor of serum BDNF levels, where lower levels of serum BDNF were detected in a subgroup of subjects with hypocortisolemia. Moreover, at baseline we found a negative correlation between BDNF and serum cortisol in volunteers with eucortisolemia. After treatment (D2) we observed higher BDNF levels in both patients and controls that ingested ayahuasca (N = 35) when compared to placebo (N = 34). Furthermore, at D2 just patients treated with ayahuasca (N = 14), and not with placebo (N = 14), presented a significant negative correlation between serum BDNF levels and depressive symptoms. This is the first double-blind randomized placebo-controlled clinical trial that explored the modulation of BDNF in response to a psychedelic in patients with depression. The results suggest a potential link between the observed antidepressant effects of ayahuasca and changes in serum BDNF, which contributes to the emerging view of using psychedelics as an antidepressant. This trial is registered at http://clinicaltrials.gov (NCT02914769).

Almeida, R. N., Galvão, A. C. D. M., Da Silva, F. S., Silva, E. A. D. S., Palhano-Fontes, F., Maia-de-Oliveira, J. P., … & Galvão-Coelho, N. (2019). Modulation of serum brain-derived neurotrophic factor by a single dose of ayahuasca: observation from a randomized controlled trial. Frontiers in psychology10, 1234., https://doi.org/10.3389/fpsyg.2019.01234
Link to full text

Acute Subjective and Behavioral Effects of Microdoses of Lysergic Acid Diethylamide in Healthy Human Volunteers

Abstract

BACKGROUND:

Numerous anecdotal reports suggest that repeated use of very low doses of lysergic acid diethylamide (LSD), known as microdosing, improves mood and cognitive function. These effects are consistent both with the known actions of LSD on serotonin receptors and with limited evidence that higher doses of LSD (100-200 μg) positively bias emotion processing. Yet, the effects of such subthreshold doses of LSD have not been tested in a controlled laboratory setting. As a first step, we examined the effects of single very low doses of LSD (0-26 μg) on mood and behavior in healthy volunteers under double-blind conditions.

METHODS:

Healthy young adults (N = 20) attended 4 laboratory sessions during which they received 0 (placebo), 6.5, 13, or 26 μg of LSD in randomized order at 1-week intervals. During expected peak drug effect, they completed mood questionnaires and behavioral tasks assessing emotion processing and cognition. Cardiovascular measures and body temperature were also assessed.

RESULTS:

LSD produced dose-related subjective effects across the 3 doses (6.5, 13, and 26 μg). At the highest dose, the drug also increased ratings of vigor and slightly decreased positivity ratings of images with positive emotional content. Other mood measures, cognition, and physiological measures were unaffected.

CONCLUSIONS:

Single microdoses of LSD produced orderly dose-related subjective effects in healthy volunteers. These findings indicate that a threshold dose of 13 μg of LSD might be used safely in an investigation of repeated administrations. It remains to be determined whether the drug improves mood or cognition in individuals with symptoms of depression.

Bershad, A. K., Schepers, S. T., Bremmer, M. P., Lee, R., & de Wit, H. (2019). Acute subjective and behavioral effects of microdoses of LSD in healthy human volunteers. Biological Psychiatry., 10.1016/j.biopsych.2019.05.019
Link to full text

Motives and side-effects of microdosing with psychedelics among users

Abstract

BACKGROUND:

Microdosing with psychedelics has gained considerable media attention where it is portrayed as a performance enhancer, especially popular on the work floor. While reports are in general positive, scientific evidence about potential negative effects is lacking aside from the prevalence and motives for use. The present study addressed this gap by surveying psychedelic users about their experience with microdosing including their dosing schedule, motivation, and potential experienced negative effects.

METHODS:

An online questionnaire was launched on several websites and fora between March and July 2018. Respondents who had consented, were 18 years of age or older, and had experience with microdosing were included in the analyses.

RESULTS:

In total, 1116 of the respondents were either currently microdosing (79.5%) or microdosed in the past (20.5%). Lysergic acid diethylamide (10 mcg) and psilocybin (0.5 g) were the most commonly used psychedelics with a microdosing frequency between 2 and 4 times per week. The majority of users, however, were oblivious about the consumed dose. Performance enhancement was the main motive to microdose (37%). The most reported negative effects were of psychological nature and occurred acutely while under the influence.

CONCLUSION:

In line with media reports and anecdotes, the majority of our respondents microdosed to enhance performance. Negative effects occurred mostly acutely after substance consumption. However, the main reason to have stopped microdosing was that it was not effective. Future experimental placebo-controlled studies are needed to test whether performance enhancement can be quantified and to assess potential negative effects after longer term microdosing.

Hutten, N. R., Mason, N. L., Dolder, P. C., & Kuypers, K. P. (2019). Motives and side-effects of microdosing with psychedelics among users. International Journal of Neuropsychopharmacology., 10.1093/ijnp/pyz029

Link to full text 

Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin

Abstract

Growing evidence from the dynamical analysis of functional neuroimaging data suggests that brain function can be understood as the exploration of a repertoire of metastable connectivity patterns (‘functional brain networks’), which potentially underlie different mental processes. The present study characterizes how the brain’s dynamical exploration of resting-state networks is rapidly modulated by intravenous infusion of psilocybin, a tryptamine psychedelic found in “magic mushrooms”. We employed a data-driven approach to characterize recurrent functional connectivity patterns by focusing on the leading eigenvector of BOLD phase coherence at single-TR resolution. Recurrent BOLD phase-locking patterns (PL states) were assessed and statistically compared pre- and post-infusion of psilocybin in terms of their probability of occurrence and transition profiles. Results were validated using a placebo session. Recurrent BOLD PL states revealed high spatial overlap with canonical resting-state networks. Notably, a PL state forming a frontoparietal subsystem was strongly destabilized after psilocybin injection, with a concomitant increase in the probability of occurrence of another PL state characterized by global BOLD phase coherence. These findings provide evidence of network-specific neuromodulation by psilocybin and represent one of the first attempts at bridging molecular pharmacodynamics and whole-brain network dynamics.

Lord, L. D., Expert, P., Atasoy, S., Roseman, L., Rapuano, K., Lambiotte, R., … & Cabral, J. (2019). Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin. NeuroImage199, 127-142., 10.1016/j.neuroimage.2019.05.060

Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Management of Psychedelic-Related Complications - Online Event - Nov 20th