OPEN Foundation

Author name: OPEN Foundation

Research ethics aspects of experimentation with LSD on human subjects: a historical and ethical review.

Abstract

In this paper our aim is to examine whether research conducted on human participants with LSD-25 (lysergic acid diethylamide) raises unique research ethical questions or demands particular concerns with regard to the design, conduct and follow-up of these studies, and should this be the case, explore and describe those issues. Our analysis is based on reviewing publications up to date which examine the clinical, research and other uses of LSD and those addressing ethical and methodological concerns of these applications, just as some historical examinations of this subject. The first chapters of the paper give an overview regarding the history of LSD-research with human participants, healthy volunteers and patients alike. The remaining chapters have a focus on questions regarding the potential ethical issues of such human trials in the contemporary research ethics framework. We also consider briefly political and regulatory issues regarding this substance that possibly affect its clinical and research applications.
Bodnár, K. J., & Kakuk, P. (2018). Research ethics aspects of experimentation with LSD on human subjects: a historical and ethical review. Medicine, Health Care and Philosophy, 1-11., 10.1007/s11019-018-9871-9
Link to full text

Research ethics aspects of experimentation with LSD on human subjects: a historical and ethical review. Read More »

More Realistic Forecasting of Future Life Events After Psilocybin for Treatment-Resistant Depression

Abstract

Background: Evidence suggests that classical psychedelics can promote enduring changes in personality, attitudes and optimism, as well as improvements in mental health outcomes.
Aim: To investigate the effects of a composite intervention, involving psilocybin, on pessimism biases in patients with treatment-resistant depression (TRD).
Methods: Patients with TRD (n = 15) and matched, untreated non-depressed controls (n = 15) performed the Prediction Of Future Life Events (POFLE) task. The POFLE task requires participants to predict the likelihood of certain life events occurring within a 30-day period, after which the actual rate of event occurrence is reported; this gives an index of potential pessimism versus optimism bias. Psilocybin was administered in two oral dosing sessions (10 and 25 mg) one week apart. Main outcome measures were collected at baseline and one week after the second dosing session.
Results: Patients showed a significant pessimism bias at baseline [t(14) = -3.260, p = 0.006; 95% CI (-0.16, -0.03), g = 1.1] which was related to the severity of their depressive symptoms (rs = -0.55, p = 0.017). One week after psilocybin treatment, this bias was significantly decreased [t(14) = -2.714, p = 0.017; 95% CI (-0.21, -0.02), g = 0.7] and depressive symptoms were greatly improved [t(14) = 7.900, p < 0.001; 95% CI (16.17, 28.23), g = 1.9]; moreover, the magnitude of change in both variables was significantly correlated (r = -0.57, p = 0.014). Importantly, post treatment, patients became significantly more accurate at predicting the occurrence of future life events [t(14) = 1.857, p = 0.042; 95% CI (-0.01, 0.12), g = 0.6] whereas no such change was observed in the control subjects.
Conclusion: These findings suggest that psilocybin with psychological support might correct pessimism biases in TRD, enabling a more positive and accurate outlook.
Lyons, T., & Carhart-Harris, R. L. (2018). More realistic forecasting of future life events after psilocybin for treatment-resistant depression. Frontiers in psychology9. 10.3389/fpsyg.2018.01721
Link to full text

More Realistic Forecasting of Future Life Events After Psilocybin for Treatment-Resistant Depression Read More »

Ibogaine as a treatment for substance misuse: Potential benefits and practical dangers.

Abstract

Ibogaine is an indole alkaloid found in the root bark of the Iboga shrub native to west Africa possessing hallucinogenic properties. For centuries it has been used in religious ceremonies and to gain spiritual enlightenment. However, since the early 1960s, its apparent ability to reduce craving for psychoactive substances including alcohol, cocaine, methamphetamine, opiates, and nicotine has led to its use in detoxification treatments. In many instances, clients receive treatment in non-medical settings, with little by way of robust scientific clinical trials. This chapter provides an overview of the potential benefits that could arise from such research. This is balanced against the serious adverse effects that can occur due to undiagnosed health conditions and/or concomitant use of other drugs. A detailed update is provided of the 33 deaths known to have occurred, including 5 in the UK. Looking forward, there is a need to develop better opiate detoxification treatment against a background of increasing opioid-related fatalities. A congener of ibogaine, 18-MC, appears to be safer and is to undergo clinical trials. In the meantime, would-be consumers and treatment providers must make more careful, detailed risk-assessments before using ibogaine. Treatment outcomes, including deaths, need to be accurately recorded and published.
Corkery, J. M. (2018). Ibogaine as a treatment for substance misuse: Potential benefits and practical dangers. Progress in brain research242, 217-257., 10.1016/bs.pbr.2018.08.005
Link to full text

Ibogaine as a treatment for substance misuse: Potential benefits and practical dangers. Read More »

Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents.

Abstract

The acute activation of kappa opioid receptors (KOPr) produces antinociceptive and anti-cocaine effects, however, their side-effects have limited further clinical development. Mesyl Sal B is a potent and selective KOPr analogue of Salvinorin A (Sal A), a psychoactive natural product isolated from the plant Salvia divinorum. We assessed the antinociceptive, anti-cocaine, and side-effects of Mesyl Sal B. The anti-cocaine effects are evaluated in cocaine-induced hyperactivity and behavioral sensitization to cocaine in male Sprague Dawley rats. Mesyl Sal B was assessed for anhedonia (conditioned taste aversion), aversion (conditioned place aversion), pro-depressive effects (forced swim test), anxiety (elevated plus maze) and learning and memory deficits (novel object recognition). In male B6.SJL mice, the antinociceptive effects were evaluated in warm-water (50 °C) tail withdrawal and intraplantar formaldehyde (2%) assays and the sedative effects measured with the rotarod performance task. Mesyl Sal B (0.3 mg/kg) attenuated cocaine-induced hyperactivity and behavioral sensitization to cocaine without modulating sucrose self-administration and without producing aversion, sedation, anxiety, or learning and memory impairment in rats. However, increased immobility was observed in the forced swim test indicating pro-depressive effects. Mesyl Sal B was not as potent as Sal A at reducing pain in the antinociceptive assays. In conclusion, Mesyl Sal B possesses anti-cocaine effects, is longer acting in vivo and has fewer side-effects when compared to Sal A, however, the antinociceptive effects are limited.
Kivell, B., Paton, K., Kumar, N., Morani, A., Culverhouse, A., Shepherd, A., … & Prisinzano, T. (2018). Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents. Molecules23(10), 2602., 10.3390/molecules23102602
Link to full text

Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents. Read More »

Pharmacokinetic And Pharmacodynamic Aspects Of Peyote And Mescaline: Clinical And Forensic Repercussions

Abstract

BACKGROUND:

Mescaline (3,4,5-trimethoxyphenethylamine), mainly found in the Peyote cactus (Lophophora williamsii), is one of the oldest known hallucinogenic agents that influence human and animal behavior, but its psychoactive mechanisms remain poorly understood.

OBJECTIVES:

This article aims to fully review pharmacokinetics and pharmacodynamics of mescaline, focusing on the in vivo and in vitro metabolic profile of the drug and its implications for the variability of response.

METHODS:

Mescaline pharmacokinetic and pharmacodynamic aspects were searched in books and in PubMed (U.S. National Library of Medicine) without a limiting period. Biological effects of other compounds found in peyote were also reviewed.

RESULTS:

Although its illicit administration is less common, in comparison with cocaine and Cannabis, it has been extensively described in adolescents and young adults, and licit consumption often occurs in religious and therapeutic rituals practiced by the Native American Church. Its pharmacodynamic mechanisms of action are primarily attributed to the interaction with the serotonergic 5-HT2A-C receptors, and therefore clinical effects are similar to those elicited by other psychoactive substances, such as lysergic acid diethylamide (LSD) and psilocybin, which include euphoria, hallucinations, depersonalization and psychoses. Moreover, as a phenethylamine derivative, signs and symptoms are consistent with a sympathomimetic effect. Mescaline is mainly metabolized into trimethoxyphenylacetic acid by oxidative deamination but several minor metabolites with possible clinical and forensic repercussions have also been reported.

CONCLUSION:

Most reports concerning mescaline were described in a complete absence of exposure confirmation, since toxicological analysis is not widely available. Addiction and dependence are practically absent and it is clear that most intoxications appear to be mild and are unlikely to produce life-threatening symptoms, which favors the contemporary interest in the therapeutic potential of the drugs of the class.

Dinis-Oliveira, R. J., Pereira, C. L., & Da Silva, D. D., (2018). Pharmacokinetic And Pharmacodynamic Aspects Of Peyote And Mescaline: Clinical And Forensic Repercussions. Current molecular pharmacology., 10.2174/1874467211666181010154139
Link to full text

Pharmacokinetic And Pharmacodynamic Aspects Of Peyote And Mescaline: Clinical And Forensic Repercussions Read More »

DARK Classics in Chemical Neuroscience: Ibogaine.

Abstract

The West African iboga plant has been used for centuries by the Bwiti and Mbiri tribes to induce hallucinations during religious ceremonies. Ibogaine, the principal alkaloid responsible for iboga’s psychedelic properties, was isolated and sold as an antidepressant in France for decades before its adverse effects precipitated its removal from the market. An ibogaine resurgence in the 1960s was driven by U.S. heroin addicts who claimed that ibogaine cured their opiate addictions. Behavioral pharmacologic studies in animal models provided evidence that ibogaine could blunt self-administration of not only opiates but cocaine, amphetamines, and nicotine. Ibogaine displays moderate-to-weak affinities for a wide spectrum of receptor and transporter proteins; recent work suggests that its actions at nicotinic acetylcholine receptor subtypes may underlie its reputed antiopiate effects. At micromolar levels, ibogaine is neurotoxic and cardiotoxic and has been linked to several deaths by cardiac arrest. Structure-activity studies led to the isolation of the ibogaine analog 18-methoxycoronaridine (18-MC), an α3β4 nicotinic receptor modulator that retains ibogaine’s anticraving properties with few or no adverse effects. Clinical trials of 18-MC treatment of nicotine addiction are pending. Ibogaine analogs may also hold promise for treating anxiety and depression via the “psychedelic-assisted therapy” approach that employs hallucinogens including psilocybin and methylenedioxymethamphetamine (“ecstasy”).
Wasko, M. J., Witt-Enderby, P. A., & Surratt, C. K. (2018). DARK Classics in Chemical Neuroscience: Ibogaine. ACS chemical neuroscience9(10), 2475-2483., 10.1021/acschemneuro.8b00294
Link to full text

DARK Classics in Chemical Neuroscience: Ibogaine. Read More »

Neuroscience: Modeling the Brain on Acid.

Abstract

A receptor map of serotonin distribution is integrated into a model of the dynamic activity of the brain under the effects of LSD. The approach opens new avenues to understand experimental manipulations of healthy brain activity and offers a novel drug-discovery platform.
van der Meer, J., & Breakspear, M. (2018). Neuroscience: Modeling the Brain on Acid. Current Biology28(19), R1157-R1160. doi: 10.1016/j.cub.2018.08.008, https://doi.org/10.1016/j.cub.2018.08.008
Link to full text

Neuroscience: Modeling the Brain on Acid. Read More »

Increased use of illicit drugs in a Dutch cluster headache population

Abstract

Introduction

Many patients with cluster headache report use of illicit drugs. We systematically assessed the use of illicit drugs and their effects in a well-defined Dutch cluster headache population.

Methods

In this cross-sectional explorative study, 756 people with cluster headache received a questionnaire on lifetime use and perceived effects of illicit drugs. Results were compared with age and sex-matched official data from the Dutch general population.

Results

Compared to the data from the general population, there were more illicit drug users in the cluster headache group (31.7% vs. 23.8%; p < 0.01). Reduction in attack frequency was reported by 56% (n = 22) of psilocybin mushroom, 60% (n = 3) of lysergic acid diethylamide and 50% (n = 2) of heroin users, and a decreased attack duration was reported by 46% (n = 18) of PSI, 50% (n = 2) of heroin and 36% (n = 8) of amphetamine users.

Conclusion

In the Netherlands, people with cluster headache use illicit drugs more often than the general population. The question remains whether this is due to an actual alleviatory effect, placebo response, conviction, or common pathophysiological background between cluster headache and addictive behaviours such as drug use.

de Coo, I. F., Naber, W. C., Wilbrink, L. A., Haan, J., Ferrari, M. D., & Fronczek, R. (2018). Increased use of illicit drugs in a Dutch cluster headache population. Cephalalgia., 10.1177/0333102418804160
Link to full text

Increased use of illicit drugs in a Dutch cluster headache population Read More »

The neuropharmacology of sleep paralysis hallucinations: serotonin 2A activation and a novel therapeutic drug

Abstract

Sleep paralysis is a state of involuntary immobility occurring at sleep onset or offset, often accompanied by uncanny “ghost-like” hallucinations and extreme fear reactions. I provide here a neuropharmacological account for these hallucinatory experiences by evoking the role of the serotonin 2A receptor (5-HT2AR). Research has shown that 5-HT2AR activation can induce visual hallucinations, “mystical” subjective states, and out-of-body experiences (OBEs), and modulate fear circuits. Hallucinatory experiences triggered by serotonin-serotonergic (“pseudo”) hallucinations, induced by hallucinogenic drugs-tend to be “dream-like” with the experiencer having insight (“meta-awareness”) that he is hallucinating, unlike dopaminergic (“psychotic” and “life-like”) hallucinations where such insight is lost. Indeed, hallucinatory experiences during sleep paralysis have the classic features of serotonergic hallucinations, and are strikingly similar to perceptual and subjective states induced by hallucinogenic drugs (e.g., lysergic acid diethylamide [LSD] and psilocybin), i.e., they entail visual hallucinations, mystical experiences, OBEs, and extreme fear reactions. I propose a possible mechanism whereby serotonin could be functionally implicated in generating sleep paralysis hallucinations and fear reactions through 5-HT2AR activity. Moreover, I speculate on the role of 5-HT2C receptors vis-à-vis anxiety and panic during sleep paralysis, and the orbitofrontal cortex-rich with 5-HT2A receptors-in influencing visual pathways during sleep paralysis, and, in effect, hallucinations. Finally, I propose, for the first time, a drug to target sleep paralysis hallucinations and fear reactions, namely the selective 5-HT2AR inverse agonist, pimavanserin. This account implicates gene HTR2A on chromosome 13q as the underlying cause of sleep paralysis hallucinations and could be explored using positron emission tomography.

Jalal, B. (2018). The neuropharmacology of sleep paralysis hallucinations: serotonin 2A activation and a novel therapeutic drug. Psychopharmacology235(11), 3083-3091.,  10.1007/s00213-018-5042-1

Link to full text

The neuropharmacology of sleep paralysis hallucinations: serotonin 2A activation and a novel therapeutic drug Read More »

Online Community Meet-Up with Janis Phelps - Online Event - June 26