OPEN Foundation

X. Mao

The Nucleus Accumbens and Ketamine Treatment in Major Depressive Disorder

Abstract

Animal models of depression repeatedly showed stress-induced nucleus accumbens (NAc) hypertrophy. Recently, ketamine was found to normalize this stress-induced NAc structural growth. Here, we investigated NAc structural abnormalities in major depressive disorder (MDD) in two cohorts. Cohort A included a cross-sectional sample of 34 MDD and 26 healthy control (HC) subjects, with high-resolution magnetic resonance imaging (MRI) to estimate NAc volumes. Proton MR spectroscopy (1H MRS) was used to divide MDD subjects into two subgroups: glutamate-based depression (GBD) and non-GBD. A separate longitudinal sample (cohort B) included 16 MDD patients who underwent MRI at baseline then 24 h following intravenous infusion of ketamine (0.5 mg/kg). In cohort A, we found larger left NAc volume in MDD compared to controls (Cohen’s d=1.05), but no significant enlargement in the right NAc (d=0.44). Follow-up analyses revealed significant subgrouping effects on the left (d⩾1.48) and right NAc (d⩾0.95) with larger bilateral NAc in non-GBD compared to GBD and HC. NAc volumes were not different between GBD and HC. In cohort B, ketamine treatment reduced left NAc, but increased left hippocampal, volumes in patients achieving remission. The cross-sectional data provided the first evidence of enlarged NAc in patients with MDD. These NAc abnormalities were limited to patients with non-GBD. The pilot longitudinal data revealed a pattern of normalization of left NAc and hippocampal volumes particularly in patients who achieved remission following ketamine treatment, an intriguing preliminary finding that awaits replication.
Abdallah, C. G., Jackowski, A., Salas, R., Gupta, S., Sato, J. R., Mao, X., … & Mathew, S. J. (2017). The nucleus accumbens and ketamine treatment in major depressive disorder. Neuropsychopharmacology1, 8. 10.1038/npp.2017.49
Link to full text

In vivo effects of ketamine on glutamate-glutamine and gamma-aminobutyric acid in obsessive-compulsive disorder: Proof of concept

Abstract

We previously reported the rapid and robust clinical effects of ketamine versus saline infusions in a proof-of-concept crossover trial in unmedicated adults with obsessive-compulsive disorder (OCD). This study examined the concurrent neurochemical effects of ketamine versus saline infusions using proton magnetic resonance spectroscopy (H MRS) during the clinical proof-of-concept crossover trial. Levels of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and the excitatory neurochemicals glutamate+glutamine (Glx) were acquired in the medial prefrontal cortex (MPFC), a region implicated in OCD pathology. Seventeen unmedicated OCD adults received two intravenous infusions at least 1 week apart, one of saline and one of ketamine, while lying supine in a 3.0 T GE MR scanner. The order of each infusion pair was randomized. Levels of GABA and Glx were measured in the MPFC before, during, and after each infusion and normalized to water (W). A mixed effects model found that MPFC GABA/W significantly increased over time in the ketamine compared with the saline infusion. In contrast, there were no significant differences in Glx/W between the ketamine and saline infusions. Together with earlier evidence of low cortical GABA in OCD, our findings suggest that models of OCD pathology should consider the role of GABAergic abnormalities in OCD symptomatology.

Rodriguez, C. I., Kegeles, L. S., Levinson, A., Ogden, R. T., Mao, X., Milak, M. S., … & Simpson, H. B. (2015). In vivo effects of ketamine on glutamate-glutamine and gamma-aminobutyric acid in obsessive-compulsive disorder: Proof of concept. Psychiatry Research: Neuroimaging. http://dx.doi.org/10.1016/j.pscychresns.2015.06.001
Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Indigenous Talk: Fulni-ô Culture & Jurema - Online Event - Dec 12th