OPEN Foundation

M. Tanner

3,4-methylenedioxymethamphetamine (MDMA) impairs the extinction and reconsolidation of fear memory in rats

Abstract

Clinical trials have demonstrated that 3,4-methylenedioxymethamphetamine (MDMA) paired with psychotherapy is more effective at reducing symptoms of post-traumatic stress disorder(PTSD) than psychotherapy or pharmacotherapy, alone or in combination. The processes through which MDMA acts to enhance psychotherapy are not well understood. Given that fear memories contribute to PTSD symptomology, MDMA could augment psychotherapy by targeting fear memories. The current studies investigated the effects of a single administration of MDMA on extinction and reconsolidation of cued and contextual fear memory in adult, male Long-Evans rats. Rats were exposed to contextual or auditory fear conditioning followed by systemic administration of saline or varying doses of MDMA (between 1 and 10 mg/kg) either 30 min before fear extinction training or immediately after brief fear memory retrieval (i.e. during the reconsolidation phase). MDMA administered prior to fear extinction training failed to enhance fear extinction memory, and in fact impaired drug-free cued fear extinction recall without impacting later fear relapse. MDMA administered during the reconsolidation phase, but not outside of the reconsolidation phase, produced a delayed and persistent reduction in conditioned fear. These findings are consistent with a general memory-disrupting effect of MDMA and suggest that MDMA could augment psychotherapy by modifying fear memories during reconsolidation without necessarily enhancing their extinction.

Hake, H. S., Davis, J. K., Wood, R. R., Tanner, M. K., Loetz, E. C., Sanchez, A., … & Greenwood, B. N. (2019). 3, 4-methylenedioxymethamphetamine (MDMA) impairs the extinction and reconsolidation of fear memory in rats. Physiology & behavior199, 343-350., 10.1016/j.physbeh.2018.12.007
Link to full text

The Effects of Acutely Administered 3,4-Methylenedioxymethamphetamine on Spontaneous Brain Function in Healthy Volunteers Measured with Arterial Spin Labeling and Blood Oxygen Level-Dependent Resting State Functional Connectivity

Abstract

BACKGROUND:

The compound 3,4-methylenedioxymethamphetamine (MDMA) is a potent monoamine releaser that produces an acute euphoria in most individuals.

METHODS:

In a double-blind, placebo-controlled, balanced-order study, MDMA was orally administered to 25 physically and mentally healthy individuals. Arterial spin labeling and seed-based resting state functional connectivity (RSFC) were used to produce spatial maps displaying changes in cerebral blood flow (CBF) and RSFC after MDMA administration. Participants underwent two arterial spin labeling and two blood oxygen level-dependent scans in a 90-minute scan session; MDMA and placebo study days were separated by 1 week.

RESULTS:

Marked increases in positive mood were produced by MDMA. Decreased CBF only was observed after MDMA, and this was localized to the right medial temporal lobe (MTL), thalamus, inferior visual cortex, and the somatosensory cortex. Decreased CBF in the right amygdala and hippocampus correlated with ratings of the intensity of global subjective effects of MDMA. The RSFC results complemented the CBF results, with decreases in RSFC between midline cortical regions, the medial prefrontal cortex, and MTL regions, and increases between the amygdala and hippocampus. There were trend-level correlations between these effects and ratings of intense and positive subjective effects.

CONCLUSIONS:

The MTLs appear to be specifically implicated in the mechanism of action of MDMA, but further work is required to elucidate how the drug’s characteristic subjective effects arise from its modulation of spontaneous brain activity.

Carhart-Harris, R. L., Murphy, K., Leech, R., Erritzoe, D., Wall, M. B., Ferguson, B., … & Tanner, M. (2014). The Effects of Acutely Administered 3, 4-Methylenedioxymethamphetamine on Spontaneous Brain Function in Healthy Volunteers Measured with Arterial Spin Labeling and Blood Oxygen Level–Dependent Resting State Functional Connectivity. Biological psychiatry. http://dx.doi.org/10.1016/j.biopsych.2013.12.015

Link to full text

30 April - Q&A with Rick Strassman

X