OPEN Foundation

K. Paton

Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents.

Abstract

The acute activation of kappa opioid receptors (KOPr) produces antinociceptive and anti-cocaine effects, however, their side-effects have limited further clinical development. Mesyl Sal B is a potent and selective KOPr analogue of Salvinorin A (Sal A), a psychoactive natural product isolated from the plant Salvia divinorum. We assessed the antinociceptive, anti-cocaine, and side-effects of Mesyl Sal B. The anti-cocaine effects are evaluated in cocaine-induced hyperactivity and behavioral sensitization to cocaine in male Sprague Dawley rats. Mesyl Sal B was assessed for anhedonia (conditioned taste aversion), aversion (conditioned place aversion), pro-depressive effects (forced swim test), anxiety (elevated plus maze) and learning and memory deficits (novel object recognition). In male B6.SJL mice, the antinociceptive effects were evaluated in warm-water (50 °C) tail withdrawal and intraplantar formaldehyde (2%) assays and the sedative effects measured with the rotarod performance task. Mesyl Sal B (0.3 mg/kg) attenuated cocaine-induced hyperactivity and behavioral sensitization to cocaine without modulating sucrose self-administration and without producing aversion, sedation, anxiety, or learning and memory impairment in rats. However, increased immobility was observed in the forced swim test indicating pro-depressive effects. Mesyl Sal B was not as potent as Sal A at reducing pain in the antinociceptive assays. In conclusion, Mesyl Sal B possesses anti-cocaine effects, is longer acting in vivo and has fewer side-effects when compared to Sal A, however, the antinociceptive effects are limited.
Kivell, B., Paton, K., Kumar, N., Morani, A., Culverhouse, A., Shepherd, A., … & Prisinzano, T. (2018). Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents. Molecules23(10), 2602., 10.3390/molecules23102602
Link to full text

Addressing Structural Flexibility at the A-Ring on Salvinorin A: Discovery of a Potent Kappa-Opioid Agonist with Enhanced Metabolic Stability

Abstract

Previous structure-activity studies on the neoclerodane diterpenoid salvinorin A have demonstrated the importance of the acetoxy functionality on the A-ring in its activity as a κ-opioid receptor agonist. Few studies have focused on understanding the role of conformation in these interactions. Herein we describe the synthesis and evaluation of both flexible and conformationally restricted compounds derived from salvinorin A. One such compound, spirobutyrolactone 14, was synthesized in a single step from salvinorin B and had similar potency and selectivity to salvinorin A (EC50 = 0.6 ± 0.2 nM at κ; >10000 nM at μ and δ). Microsomal stability studies demonstrated that 14 was more metabolically resistant than salvinorin A. Evaluation of analgesic and anti-inflammatory properties revealed similar in vivo effects between 14 and salvinorin A. To our knowledge, this study represents the first example of bioisosteric replacement of an acetate group by a spirobutyrolactone to produce a metabolically resistant derivative.
Sherwood, A. M., Crowley, R. S., Paton, K. F., Biggerstaff, A., Neuenswander, B., Day, V. W., … & Prisinzano, T. E. (2017). Addressing Structural Flexibility at the A-Ring on Salvinorin A: Discovery of a Potent Kappa-Opioid Agonist with Enhanced Metabolic Stability. Journal of Medicinal Chemistry60(9), 3866-3878. 10.1021/acs.jmedchem.7b00148
Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Management of Psychedelic-Related Complications - Online Event - Nov 20th