OPEN Foundation

Pharmacology & Chemistry

Production Options for Psilocybin: Making of the Magic

Abstract

The fungal genus Psilocybe and other genera comprise numerous mushroom species that biosynthesize psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine). It represents the prodrug to its dephosphorylated psychotropic analogue, psilocin. The colloquial term “magic mushrooms” for these fungi alludes to their hallucinogenic effects and to their use as recreational drugs. However, clinical trials have recognized psilocybin as a valuable candidate to be developed into a medication against depression and anxiety. We here highlight its recently elucidated biosynthesis, the concurrently developed concept of enzymatic in vitro and heterologous in vivo production, along with previous synthetic routes. The prospect of psilocybin as a promising therapeutic may entail an increased demand, which can be met by biotechnological production. Therefore, we also briefly touch on psilocybin’s therapeutic relevance and pharmacology.

Fricke, J., Lenz, C., Wick, J., Blei, F., & Hoffmeister, D. (2018). Production Options for Psilocybin: Making of the Magic. Chemistry–A European Journal., 10.1002/chem.201802758

Link to full text

Dark Classics in Chemical Neuroscience: 3,4-Methylenedioxymethamphetamine

Abstract

Better known as “ecstasy”, 3,4-methylenedioxymethamphetamine (MDMA) is a small molecule that has played a prominent role in defining the ethos of today’s teenagers and young adults, much like lysergic acid diethylamide (LSD) did in the 1960s. Though MDMA possesses structural similarities to compounds like amphetamine and mescaline, it produces subjective effects that are unlike any of the classical psychostimulants or hallucinogens and is one of the few compounds capable of reliably producing prosocial behavioral states. As a result, MDMA has captured the attention of recreational users, the media, artists, psychiatrists, and neuropharmacologists alike. Here, we detail the synthesis of MDMA as well as its pharmacology, metabolism, adverse effects, and potential use in medicine. Finally, we discuss its history and why it is perhaps the most important compound for the future of psychedelic science-having the potential to either facilitate new psychedelic research initiatives, or to usher in a second Dark Age for the field.

Dunlap, L. E., Andrews, A. M., & Olson, D. E. (2018). Dark classics in chemical neuroscience: 3, 4-Methylenedioxymethamphetamine. ACS chemical neuroscience9(10), 2408-2427., 10.1021/acschemneuro.8b00155
Link to full text

Biocatalytic production of psilocybin and derivatives in tryptophan synthase-enhanced reactions

Abstract

Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) is the main alkaloid of the fungal genus Psilocybe, the so-called “magic mushrooms.” The pharmaceutical interest in this psychotropic natural product as a future medication to treat depression and anxiety is strongly re-emerging. Here, we present an enhanced enzymatic route of psilocybin production by adding TrpB, the tryptophan synthase of the mushroom Psilocybe cubensis, to the reaction. We capitalized on its substrate flexibility and show psilocybin formation from 4-hydroxyindole and l-serine, which are less cost-intensive substrates, compared to the previous method. Furthermore, we show enzymatic production of 7-phosphoryloxytryptamine (isonorbaeocystin), a non-natural congener of the Psilocybe alkaloid norbaeocystin (4-phosphoryloxytryptamine), and of serotonin (5-hydroxytryptamine) by means of the same in vitro approach.

Blei, F., Baldeweg, F., Fricke, J., & Hoffmeister, D. (2018). Biocatalytic Production of Psilocybin and Derivatives in Tryptophan Synthase‐Enhanced Reactions. Chemistry–A European Journal24(40), 10028-10031., 10.1002/chem.201801047.
Link to full text

Influence of Environmental Factors and Cultural Methods on the Content of N,N‑Dimethyltryptamine in Psychotria viridis (Rubiaceae)

Abstract

Psychotria viridis is one of the species that produces N,N-dimethyltryptamine. Its decoction together with other species, such as Banisteriopsis caapi, produces ayahuasca, a beverage used for ritualistic and medicinal purposes. The goal of this study was to understand how environmental factors and cultivation methods influenced the content of N,N-dimethyltryptamine in P. viridis. Over all four seasons, leaf samples were collected from 25 different locations in 14 Brazilian states, and Federal District. Environmental parameters, micro and macronutrients, plant characteristics, information on farming methods were correlated with N,N-dimethyltryptamine content, determined by gas chromatography coupled to mass spectrometry (GC-MS). Greatest effects on the N,N-dimethyltryptamine amount were associated with seasonality, altitude, latitude and biome type. A positive correlation between N and Mg content and N,N-dimethyltryptamine levels was statistically established. By regression analysis, the adequate foliar nutrient levels that would result in the concentration of N,N-dimethyltryptamine in cultivated plants similar to that of Amazonian P. viridis were equated.

Cavalcante, A. D., Cardoso, G. A., de Oliveira, F. L., Bearzoti, E., Okuma, A. A., Duartee, L. P., & Vieira-Filhof, S. A. Influence of Environmental Factors and Cultural Methods on the Content of N, N‑Dimethyltryptamine in Psychotria viridis (Rubiaceae).
Link to full text

Binding of Harmine Derivatives to DNA: A Spectroscopic Investigation

Abstract

Harmine belongs to a group of β-carboline alkaloids endowed with antitumor properties. Harmine and its derivatives are thought to bind to DNA and interfere with topoisomerase activities. We investigated the base-dependent binding of harmine, and three of its synthetic anticancer-active derivatives to the genomic DNA from calf thymus and two synthetic 20-mer double helices, the poly(dG-dC)·poly(dG-dC) and the poly(dA-dT)·poly(dA-dT), by means of UV-Vis and circular dichroism (CD) spectroscopies. The data show that the DNA binding and stabilising properties of the investigated derivatives are base pair-dependent. These results could be used as a guide to design and develop further bioactive analogues.
Pagano, B., Caterino, M., Filosa, R., & Giancola, C. (2017). Binding of Harmine Derivatives to DNA: A Spectroscopic Investigation. Molecules22(11), 1831. 10.3390/molecules22111831
Link to full text

Identification of ω-N-Methyl-4-hydroxytryptamine (Norpsilocin) as a Psilocybe Natural Product

Abstract

We report the identification of ω-N-methyl-4-hydroxytryptamine (norpsilocin, 1) from the carpophores of the hallucinogenic mushroom Psilocybe cubensis. The structure was elucidated by 1D and 2D NMR spectroscopy and high-resolution mass spectrometry. Norpsilocin has not previously been reported as a natural product. It likely represents the actual psychotropic agent liberated from its 4-phosphate ester derivative, the known natural product baeocystin. We further present a simple and artifact-free extraction method that prevents dephosphorylation and therefore helps reflect the naturally occurring metabolic profile of Psilocybe mushrooms in subsequent analyses.
Lenz, C., Wick, J., & Hoffmeister, D. (2017). Identification of ω-N-Methyl-4-hydroxytryptamine (Norpsilocin) as a Psilocybe Natural Product. Journal of Natural Products80(10), 2835-2838. 10.1021/acs.jnatprod.7b00407
Link to full text

Enzymatic synthesis of psilocybin

Abstract

Psilocybin is the psychotropic tryptamine-derived natural product of Psilocybe carpophores, the so-called “magic mushrooms”. Although its structure has been known for 60 years, the enzymatic basis of its biosynthesis has remained obscure. We characterized four psilocybin biosynthesis enzymes, namely i) PsiD, which represents a new class of fungal l-tryptophan decarboxylases, ii) PsiK, which catalyzes the phosphotransfer step, iii) the methyltransferase PsiM, catalyzing iterative N-methyl transfer as the terminal biosynthetic step, and iv) PsiH, a monooxygenase. In a combined PsiD/PsiK/PsiM reaction, psilocybin was synthesized enzymatically in a step-economic route from 4-hydroxy-l-tryptophan. Given the renewed pharmaceutical interest in psilocybin, our results may lay the foundation for its biotechnological production.
Fricke, J., Blei, F., & Hoffmeister, D. (2017). Enzymatic synthesis of psilocybin. Angewandte Chemie International Edition. 10.1002/anie.201705489
Link to full text

Screening of Hallucinogenic Compounds and Genomic Characterisation of 40 Anatolian Salvia Species

Abstract

Introduction
Salvia, an important and widely available member of Lamiaceae family. Although comparative analysis on secondary metabolites in several Salvia species from Turkey has been reported, their hallucinogenic chemicals have not been screened thoroughly.
Objective
This study provides LC–MS/MS analysis of 40 Salvia species for screening their psychoactive constituents of salvinorin A and salvinorin B. 5S–rRNA gene non-coding region of Salvia plants was sequenced, aligned and compared with that sequence of Salvia divinorum plant.
Methodology
Targeted molecules of salvinorin A and salvinorin B were quantified, using LC–MS/MS, from all aerial parts of 40 Salvia species, collected from different parts of Turkey. Regions of 5S–rRNA gene from different species were amplified by polymerase chain reaction and DNA sequences were aligned with Salvia divinorum DNA sequences.
Results
Very few of the Salvia species (S. recognita, S. cryptantha and S. glutinosa) contained relatively high levels of salvinorin A (212.86 ± 20.46 μg/g, 51.50 ± 4.95 μg/g and 38.92 ± 3.74 μg/g, respectively). Salvinorin B was also found in Salvia species of S. potentillifolia, S. adenocaulon and S. cryptantha as 2351.99 ± 232.22 μg/g, 768.78 ± 75.90 μg/g and 402.24 ± 39.71 μg/g, respectively. The sequences of 5S–rRNA gene of 40 different Salvia species were presented and it was found that none of the Salvia species in Turkey had similar DNA sequence to Salvia divinorum plant.
Conclusion
This is the first report of screening 40 Salvia species in Turkey according to their psychoactive constituents, salvinorin A and salvinorin B and their genomic structures. It is possible that some of these Salvia species may exhibit some psycho activity. Thus, they need to be screened further.
Hatipoglu, S. D., Yalcinkaya, B., Akgoz, M., Ozturk, T., Goren, A. C., & Topcu, G. (2017). Screening of Hallucinogenic Compounds and Genomic Characterisation of 40 Anatolian Salvia Species. Phytochemical Analysis. 10.1002/pca.2703
Link to full text

Screening of Hallucinogenic Compounds and Genomic Characterisation of 40 Anatolian Salvia Species

Abstract

INTRODUCTION:
Salvia, an important and widely available member of Lamiaceae family. Although comparative analysis on secondary metabolites in several Salvia species from Turkey has been reported, their hallucinogenic chemicals have not been screened thoroughly.
OBJECTIVE:
This study provides LC-MS/MS analysis of 40 Salvia species for screening their psychoactive constituents of salvinorin A and salvinorin B. 5S-rRNA gene non-coding region of Salvia plants was sequenced, aligned and compared with that sequence of Salvia divinorum plant.
METHODOLOGY:
Targeted molecules of salvinorin A and salvinorin B were quantified, using LC-MS/MS, from all aerial parts of 40 Salvia species, collected from different parts of Turkey. Regions of 5S-rRNA gene from different species were amplified by polymerase chain reaction and DNA sequences were aligned with Salvia divinorum DNA sequences.
RESULTS:
Very few of the Salvia species (S. recognita, S. cryptantha and S. glutinosa) contained relatively high levels of salvinorin A (212.86 ± 20.46 μg/g, 51.50 ± 4.95 μg/g and 38.92 ± 3.74 μg/g, respectively). Salvinorin B was also found in Salvia species of S. potentillifolia, S. adenocaulon and S. cryptantha as 2351.99 ± 232.22 μg/g, 768.78 ± 75.90 μg/g and 402.24 ± 39.71 μg/g, respectively. The sequences of 5S-rRNA gene of 40 different Salvia species were presented and it was found that none of the Salvia species in Turkey had similar DNA sequence to Salvia divinorum plant.
CONCLUSION:
This is the first report of screening 40 Salvia species in Turkey according to their psychoactive constituents, salvinorin A and salvinorin B and their genomic structures. It is possible that some of these Salvia species may exhibit some psycho activity. Thus, they need to be screened further.
Hatipoglu, S. D., Yalcinkaya, B., Akgoz, M., Ozturk, T., Goren, A. C., & Topcu, G. (2017). Screening of Hallucinogenic Compounds and Genomic Characterisation of 40 Anatolian Salvia Species. Phytochemical Analysis. 10.1002/pca.2703
Link to full text

Development and validation of an LC-MS/MS method to quantify lysergic acid diethylamide (LSD), iso-LSD, 2-oxo-3-hydroxy-LSD, and nor-LSD and identify novel metabolites in plasma samples in a controlled clinical trial

Abstract

BACKGROUND:
Lysergic acid diethylamide (LSD) is a widely used recreational drug. The aim of this study was to develop and validate a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the quantification of LSD, iso-LSD, 2-oxo-3-hydroxy LSD (O-H-LSD), and nor-LSD in plasma samples from 24 healthy subjects after controlled administration of 100 μg LSD in a clinical trial. In addition, metabolites that have been recently described in in vitro studies, including lysergic acid monoethylamide (LAE), lysergic acid ethyl-2-hydroxyethylamide (LEO), 2-oxo-LSD, trioxylated-LSD, and 13/14-hydroxy-LSD, should be identified.
METHODS:
Separation of LSD and its metabolites was achieved on a reversed phase chromatography column after turbulent-flow online extraction. For the identification and quantification, a triple-stage quadrupole LC-MS/MS instrument was used.
RESULTS:
The validation data showed slight matrix effects for LSD, iso-LSD, O-H-LSD, or nor-LSD. Mean intraday and interday accuracy and precision were 105%/4.81% and 105%/4.35% for LSD, 98.7%/5.75% and 99.4%/7.21% for iso-LSD, 106%/4.54% and 99.4%/7.21% for O-H-LSD, and 107%/5.82% and 102%/5.88% for nor-LSD, respectively. The limit of quantification was 0.05 ng/mL for LSD, iso-LSD, and nor-LSD and 0.1 ng/mL for O-H-LSD. The limit of detection was 0.01 ng/mL for all compounds.
CONCLUSION:
The method described herein was accurate, precise, and the calibration range within the range of expected plasma concentrations. LSD was quantified in the plasma samples of the 24 subjects of the clinical trial, whereas iso-LSD, O-H-LSD, nor-LSD, LAE, LEO, 13/14-hydroxy-LSD, and 2-oxo-LSD could only sporadically be detected but were too low for quantification.
Dolder, P. C., Liechti, M. E., & Rentsch, K. M. (2017). Development and validation of an LC‐MS/MS method to quantify lysergic acid diethylamide (LSD), iso‐LSD, 2‐oxo‐3‐hydroxy‐LSD, and nor‐LSD and identify novel metabolites in plasma samples in a controlled clinical trial. Journal of Clinical Laboratory Analysis. 10.1002/jcla.22265
Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Management of Psychedelic-Related Complications - Online Event - Nov 20th