OPEN Foundation

Scienitific Discipline

Mushroom-Derived Indole Alkaloids

Abstract

Mushrooms are known to produce over 140 natural products bearing an indole heterocycle. In this review, the isolation of these mushroom-derived indole alkaloids is discussed, along with their associated biological activities.
Homer, J. A., & Sperry, J. (2017). Mushroom-Derived Indole Alkaloids. Journal of Natural Products80(7), 2178-2187. 10.1021/acs.jnatprod.7b00390
Link to full text

First time view on human metabolome changes after a single intake of 3,4 methylenedioxymethamphetamine (MDMA) in healthy placebo-controlled subjects

Abstract

3,4-Methylenedioxymethamphetamine (MDMA; “ecstasy”) is widely consumed recreationally. Little is known about its effects on the human metabolome. Mapping biochemical changes after drug exposure can complement traditional approaches by revealing potential biomarkers of organ toxicity or discovering new metabolomic features in a time- and dose-dependent manner. We aimed to analyze for the first time plasma samples from a randomized, double-blind, placebo-controlled crossover study in healthy adults to explore changes in endogenous plasma metabolites following a single intake of MDMA. Plasma samples from 15 subjects taken at four different time points were analyzed with the commercially available AbsoluteIDQ kit (Biocrates). Time series analysis revealed a total of nine metabolites, which showed a significant concentration change after MDMA administration compared with placebo. Paired t tests of the single time points showed statistically significant concentration changes mainly of glycerophospholipids and the metabolic ratio of methionine-sulfoxide over methionine. Changes of this metabolic ratio may be indicative for changes in systemic oxidative stress levels, and the increased amount of glycerophospholipids could be interpreted as an upregulation of energy production. Baseline samples within the experimental study design were crucial for evaluation of metabolomics data as interday individuality within subjects was high otherwise resulting in overestimations of the findings.
Boxler, M. I., Liechti, M. E., Schmid, Y., Kraemer, T., & Steuer, A. E. (2017). First Time View on Human Metabolome Changes after a Single Intake of 3, 4-Methylenedioxymethamphetamine in Healthy Placebo-Controlled Subjects. Journal of Proteome Research16(9), 3310-3320. 10.1021/acs.jproteome.7b00294
Link to full text

Screening of Hallucinogenic Compounds and Genomic Characterisation of 40 Anatolian Salvia Species

Abstract

INTRODUCTION:
Salvia, an important and widely available member of Lamiaceae family. Although comparative analysis on secondary metabolites in several Salvia species from Turkey has been reported, their hallucinogenic chemicals have not been screened thoroughly.
OBJECTIVE:
This study provides LC-MS/MS analysis of 40 Salvia species for screening their psychoactive constituents of salvinorin A and salvinorin B. 5S-rRNA gene non-coding region of Salvia plants was sequenced, aligned and compared with that sequence of Salvia divinorum plant.
METHODOLOGY:
Targeted molecules of salvinorin A and salvinorin B were quantified, using LC-MS/MS, from all aerial parts of 40 Salvia species, collected from different parts of Turkey. Regions of 5S-rRNA gene from different species were amplified by polymerase chain reaction and DNA sequences were aligned with Salvia divinorum DNA sequences.
RESULTS:
Very few of the Salvia species (S. recognita, S. cryptantha and S. glutinosa) contained relatively high levels of salvinorin A (212.86 ± 20.46 μg/g, 51.50 ± 4.95 μg/g and 38.92 ± 3.74 μg/g, respectively). Salvinorin B was also found in Salvia species of S. potentillifolia, S. adenocaulon and S. cryptantha as 2351.99 ± 232.22 μg/g, 768.78 ± 75.90 μg/g and 402.24 ± 39.71 μg/g, respectively. The sequences of 5S-rRNA gene of 40 different Salvia species were presented and it was found that none of the Salvia species in Turkey had similar DNA sequence to Salvia divinorum plant.
CONCLUSION:
This is the first report of screening 40 Salvia species in Turkey according to their psychoactive constituents, salvinorin A and salvinorin B and their genomic structures. It is possible that some of these Salvia species may exhibit some psycho activity. Thus, they need to be screened further.
Hatipoglu, S. D., Yalcinkaya, B., Akgoz, M., Ozturk, T., Goren, A. C., & Topcu, G. (2017). Screening of Hallucinogenic Compounds and Genomic Characterisation of 40 Anatolian Salvia Species. Phytochemical Analysis. 10.1002/pca.2703
Link to full text

From rau to sacred plants: Transfigurations of shamanic agency among the Siona Indians of Colombia

Abstract

Translations of the native notion of shamanic agency of the Siona Indians of Colombia is explored throughout different historical and social contexts. The polysemic concept rau is central to the shaman’s capacity for establishing relations of exchange and negotiation with humans and non-humans. As the embodiment of his power, it fits within a semantic field that conveys the waxing and waning of life cycles. Sharing a series of qualities with the Melanesian concept of mana, rau should be understood as a social phenomenon whose use and meaning has transfigured through time and space. However, unlike the globalization of new mana, the important notion of Siona shamanic agency has been substituted by representations of the ritual substance of yajé as key symbol for power and knowledge as Siona rituals have been revitalized in their dialogue with the ethnic identity movement and the neo-shamanic network that associates sacred plants with primordial knowledge and agency.
Langdon, E. J. (2017). From rau to sacred plants: Transfigurations of shamanic agency among the Siona Indians of Colombia. Social Compass64(3), 343-359. 10.1177/0037768617713654
Link to full text

Posttraumatic Stress Disorder: An Integrated Overview of the Neurobiological Rationale for Pharmacology

Abstract

Thirty years of research on the biology of posttraumatic stress disorder now provides a foundation for hypotheses related to the mechanisms underlying the pharmacotherapy of this disorder. Only two medications, sertraline and paroxetine, are approved by the U.S. Food and Drug Administration for the treatment of PTSD. Although these medications are somewhat effective, other treatment mechanisms must be explored to address the unmet need for effective treatment. This article provides a concise summary of advances in our understanding of the neurobiology of PTSD and novel approaches to pharmacotherapy.
Kelmendi, B., Adams, T. G., Southwick, S., Abdallah, C. G., & Krystal, J. H. (2017). Posttraumatic stress disorder: An integrated overview of the neurobiological rationale for pharmacology. Clinical Psychology: Science and Practice. 10.1111/cpsp.12202
Link to full text

Monoamine receptor interaction profiles of 4-thio-substituted phenethylamines (2C-T drugs)

Abstract

BACKGROUND:
4-Thio-substituted phenethylamines (2C-T drugs) are potent psychedelics with poorly defined pharmacological properties. Because of their psychedelic effects, 2C-T drugs are sometimes sold as new psychoactive substances (NPSs). The aim of the present study was to characterize the monoamine receptor and transporter interaction profiles of a series of 2C-T drugs.
METHODS:
We determined the binding affinities of 2C-T drugs at monoamine receptors and transporters in human cells that were transfected with the respective receptors or transporters. We also investigated the functional activation of serotonergic 5-hydroxytryptamine 2A (5-HT2A) and 5-HT2B receptors, activation of human trace amine-associated receptor 1 (TAAR1), and inhibition of monoamine uptake transporters.
RESULTS:
2C-T drugs had high affinity for 5-HT2A and 5-HT2C receptors (1-54 nM and 40-350 nM, respectively). With activation potencies of 1-53 nM and 44-370 nM, the drugs were potent 5-HT2A receptor and 5-HT2B receptor, respectively, partial agonists. An exception to this were the benzylthiophenethylamines, which did not potently activate the 5-HT2B receptor (EC50 > 3000 nM). Furthermore, the compounds bound to serotonergic 5-HT1A and adrenergic receptors. The compounds had high affinity for the rat TAAR1 (5-68 nM) and interacted with the mouse but not human TAAR1. The 2C-T drugs did not potently interact with monoamine transporters (Ki > 4000 nM).
CONCLUSION:
The receptor binding profile of 2C-T drugs predicts psychedelic effects that are mediated by potent 5-HT2 receptor interactions.
Luethi, D., Trachsel, D., Hoener, M. C., & Liechti, M. E. (2017). Monoamine receptor interaction profiles of 4-thio-substituted phenethylamines (2C-T drugs). Neuropharmacology. 10.1016/j.neuropharm.2017.07.012
Link to full text

The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro

Abstract

Banisteriopsis caapi is the basic ingredient of ayahuasca, a psychotropic plant tea used in the Amazon for ritual and medicinal purposes, and by interested individuals worldwide. Animal studies and recent clinical research suggests that Bcaapi preparations show antidepressant activity, a therapeutic effect that has been linked to hippocampal neurogenesis. Here we report that harmine, tetrahydroharmine and harmaline, the three main alkaloids present in Bcaapi, and the harmine metabolite harmol, stimulate adult neurogenesis in vitro. In neurospheres prepared from progenitor cells obtained from the subventricular and the subgranular zones of adult mice brains, all compounds stimulated neural stem cell proliferation, migration, and differentiation into adult neurons. These findings suggest that modulation of brain plasticity could be a major contribution to the antidepressant effects of ayahuasca. They also expand the potential application of Bcaapi alkaloids to other brain disorders that may benefit from stimulation of endogenous neural precursor niches.
Morales-García, J. A., de la Fuente Revenga, M., Alonso-Gil, S., Rodríguez-Franco, M. I., Feilding, A., Perez-Castillo, A., & Riba, J. (2017). The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro. Scientific reports7, 5309. 10.1038%2Fs41598-017-05407-9
Link to full text

The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro

Abstract

Banisteriopsis caapi is the basic ingredient of ayahuasca, a psychotropic plant tea used in the Amazon for ritual and medicinal purposes, and by interested individuals worldwide. Animal studies and recent clinical research suggests that Bcaapi preparations show antidepressant activity, a therapeutic effect that has been linked to hippocampal neurogenesis. Here we report that harmine, tetrahydroharmine and harmaline, the three main alkaloids present in Bcaapi, and the harmine metabolite harmol, stimulate adult neurogenesis in vitro. In neurospheres prepared from progenitor cells obtained from the subventricular and the subgranular zones of adult mice brains, all compounds stimulated neural stem cell proliferation, migration, and differentiation into adult neurons. These findings suggest that modulation of brain plasticity could be a major contribution to the antidepressant effects of ayahuasca. They also expand the potential application of Bcaapi alkaloids to other brain disorders that may benefit from stimulation of endogenous neural precursor niches.
Morales-García, J. A., de la Fuente Revenga, M., Alonso-Gil, S., Rodríguez-Franco, M. I., Feilding, A., Perez-Castillo, A., & Riba, J. (2017). The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro. Scientific Reports7. 10.1038%2Fs41598-017-05407-9
Link to full text

Neuropathic and inflammatory antinociceptive effects and electrocortical changes produced by Salvia divinorum in rats

Abstract

Ethnopharmacological relevance

Salvia divinorum is a medicinal plant traditionally used in hallucinogenic ethnopharmacological practices and for its analgesic and antinflammatory properties. Its active compounds include diterpenes known as salvinorins which act as potent κ opioid receptor agonists.

Aim of the study

Given its effects in acute animal models of pain, as well as its antinflammatory attributes, we decided to investigate the analgesic effects of an SD extract in neuropathic (sciatic loose nerve ligature) and inflammatory (intra plantar carrageenan) pain models in rats. We also determined in this study the electrocorticographic changes to correlate similar hallucinogenic state and behavior as those produced in humans.

Material and methods

Mechanical and thermonociceptive responses, plantar test and von Frey assay, respectively, were measured in adult Wistar rats 30 min, 3 h and 24 h after the intraperitoneal administration of saline or an hydroponic SD extract. We also evaluated carbamazepine and celecoxib, as gold reference drugs, to compare its antinociceptive effects.

Results

Our results showed that administration of SD extract induced antialgesic effects in both neuropathic and inflammatory pain models. All those effects were blocked by nor-binaltorphimine (a Kappa opioid receptor antagonist). Moreover, it was observed an increase of the anterior power spectral density and a decrease in the posterior region as electrocorticographic changes.

Conclusion

The present investigation give evidence that SD is capable to reduce algesic response associated to neuropathic and inflammatory nociception. This study support therapeutic alternatives for a disabling health problem due to the long term pain with high impact on population and personal and social implications.

Simón-Arceo, K., González-Trujano, M. E., Coffeen, U., Fernández-Mas, R., Mercado, F., Almanza, A., … & Pellicer, F. (2017). Neuropathic and inflammatory antinociceptive effects and electrocortical changes produced by Salvia divinorum in rats. Journal of Ethnopharmacology206, 115-124. 10.1016/j.jep.2017.05.016
Link to full text

Two dose investigation of the 5-HT-agonist psilocybin on relative and global cerebral blood flow

Abstract

Psilocybin, the active compound in psychedelic mushrooms, is an agonist of various serotonin receptors. Seminal psilocybin positron emission tomography (PET) research suggested regional increases in glucose metabolism in frontal cortex (hyperfrontality). However, a recent arterial spin labeling (ASL) study suggests psilocybin may lead to hypo-perfusion in various brain regions. In this placebo-controlled, double-blind study we used pseudo-continuous ASL (pCASL) to measure perfusion changes, with and without adjustment for global brain perfusion, after two doses of oral psilocybin (low dose: 0.160 mg/kg; high dose: 0.215 mg/kg) in two groups of healthy controls (n = 29 in both groups, total N = 58) during rest. We controlled for sex and age and used family-wise error corrected p values in all neuroimaging analyses. Both dose groups reported profound subjective drug effects as measured by the Altered States of Consciousness Rating Scale (5D-ASC) with the high dose inducing significantly larger effects in four out of the 11 scales. After adjusting for global brain perfusion, psilocybin increased relative perfusion in distinct right hemispheric frontal and temporal regions and bilaterally in the anterior insula and decreased perfusion in left hemispheric parietal and temporal cortices and left subcortical regions. Whereas, psilocybin significantly reduced absolute perfusion in frontal, temporal, parietal, and occipital lobes, and bilateral amygdalae, anterior cingulate, insula, striatal regions, and hippocampi. Our analyses demonstrate consistency with both the hyperfrontal hypothesis of psilocybin and the more recent study demonstrating decreased perfusion, depending on analysis method. Importantly, our data illustrate that relative changes in perfusion should be understood and interpreted in relation to absolute signal variations.
Lewis, C. R., Preller, K. H., Kraehenmann, R., Michels, L., Stämpfli, P., & Vollenweider, F. X. (2017). Two dose investigation of the 5-HT-agonist psilocybin on relative and global cerebral blood flow. NeuroImage. 10.1016/j.neuroimage.2017.07.020
Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Psychedelic Care in Recreational Settings - Online Event - Oct 3rd