OPEN Foundation

Neuroscience

Serotonergic psychedelics LSD & psilocybin increase the fractal dimension of cortical brain activity in spatial and temporal domains

Abstract

Psychedelic drugs, such as psilocybin and LSD, represent unique tools for researchers investigating the neural origins of consciousness. Currently, the most compelling theories of how psychedelics exert their effects is by increasing the complexity of brain activity and moving the system towards a critical point between order and disorder, creating more dynamic and complex patterns of neural activity. While the concept of criticality is of central importance to this theory, few of the published studies on psychedelics investigate it directly, testing instead related measures such as algorithmic complexity or Shannon entropy. We propose using the fractal dimension of functional activity in the brain as a measure of complexity since findings from physics suggest that as a system organizes towards criticality, it tends to take on a fractal structure. We tested two different measures of fractal dimension, one spatial and one temporal, using fMRI data from volunteers under the influence of both LSD and psilocybin. The first was the fractal dimension of cortical functional connectivity networks and the second was the fractal dimension of BOLD time-series. In addition to the fractal measures, we used a well-established, non-fractal measure of signal complexity and show that they behave similarly. We were able to show that both psychedelic drugs significantly increased the fractal dimension of functional connectivity networks, and that LSD significantly increased the fractal dimension of BOLD signals, with psilocybin showing a non-significant trend in the same direction. With both LSD and psilocybin, we were able to localize changes in the fractal dimension of BOLD signals to brain areas assigned to the dorsal-attenion network. These results show that psychedelic drugs increase the fractal dimension of activity in the brain and we see this as an indicator that the changes in consciousness triggered by psychedelics are associated with evolution towards a critical zone.

Varley, T. F., Carhart-Harris, R., Roseman, L., Menon, D. K., & Stamatakis, E. A. (2020). Serotonergic psychedelics LSD & psilocybin increase the fractal dimension of cortical brain activity in spatial and temporal domains. NeuroImage, 220, 117049. https://doi.org/10.1016/j.neuroimage.2020.117049

Link to full text

Serotonergic psychedelics LSD & psilocybin increase the fractal dimension of cortical brain activity in spatial and temporal domains

Abstract

Psychedelic drugs, such as psilocybin and LSD, represent unique tools for researchers investigating the neural origins of consciousness. Currently, the most compelling theories of how psychedelics exert their effects is by increasing the complexity of brain activity and moving the system towards a critical point between order and disorder, creating more dynamic and complex patterns of neural activity. While the concept of criticality is of central importance to this theory, few of the published studies on psychedelics investigate it directly, testing instead related measures such as algorithmic complexity or Shannon entropy. We propose using the fractal dimension of functional activity in the brain as a measure of complexity since findings from physics suggest that as a system organizes towards criticality, it tends to take on a fractal structure. We tested two different measures of fractal dimension, one spatial and one temporal, using fMRI data from volunteers under the influence of both LSD and psilocybin. The first was the fractal dimension of cortical functional connectivity networks and the second was the fractal dimension of BOLD time-series. In addition to the fractal measures, we used a well-established, non-fractal measure of signal complexity and show that they behave similarly. We were able to show that both psychedelic drugs significantly increased the fractal dimension of functional connectivity networks, and that LSD significantly increased the fractal dimension of BOLD signals, with psilocybin showing a non-significant trend in the same direction. With both LSD and psilocybin, we were able to localize changes in the fractal dimension of BOLD signals to brain areas assigned to the dorsal-attenion network. These results show that psychedelic drugs increase the fractal dimension of activity in the brain and we see this as an indicator that the changes in consciousness triggered by psychedelics are associated with evolution towards a critical zone.

Varley, T. F., Carhart-Harris, R., Roseman, L., Menon, D. K., & Stamatakis, E. A. (2020). Serotonergic psychedelics LSD & psilocybin increase the fractal dimension of cortical brain activity in spatial and temporal domains. NeuroImage220, 117049; 10.1016/j.neuroimage.2020.117049
Link to full text

Serotonergic psychedelics LSD & psilocybin increase the fractal dimension of cortical brain activity in spatial and temporal domains

Abstract

Psychedelic drugs, such as psilocybin and LSD, represent unique tools for researchers investigating the neural origins of consciousness. Currently, the most compelling theories of how psychedelics exert their effects is by increasing the complexity of brain activity and moving the system towards a critical point between order and disorder, creating more dynamic and complex patterns of neural activity. While the concept of criticality is of central importance to this theory, few of the published studies on psychedelics investigate it directly, testing instead related measures such as algorithmic complexity or Shannon entropy. We propose using the fractal dimension of functional activity in the brain as a measure of complexity since findings from physics suggest that as a system organizes towards criticality, it tends to take on a fractal structure. We tested two different measures of fractal dimension, one spatial and one temporal, using fMRI data from volunteers under the influence of both LSD and psilocybin. The first was the fractal dimension of cortical functional connectivity networks and the second was the fractal dimension of BOLD time-series. In addition to the fractal measures, we used a well-established, non-fractal measure of signal complexity and show that they behave similarly. We were able to show that both psychedelic drugs significantly increased the fractal dimension of functional connectivity networks, and that LSD significantly increased the fractal dimension of BOLD signals, with psilocybin showing a non-significant trend in the same direction. With both LSD and psilocybin, we were able to localize changes in the fractal dimension of BOLD signals to brain areas assigned to the dorsal-attenion network. These results show that psychedelic drugs increase the fractal dimension of activity in the brain and we see this as an indicator that the changes in consciousness triggered by psychedelics are associated with evolution towards a critical zone.

Varley, T. F., Carhart-Harris, R., Roseman, L., Menon, D. K., & Stamatakis, E. A. (2020). Serotonergic psychedelics LSD & psilocybin increase the fractal dimension of cortical brain activity in spatial and temporal domains. NeuroImage220, 117049; 10.1016/j.neuroimage.2020.117049
Link to full text

Psilocybin occasioned mystical-type experiences

Abstract

Objective: Research into psychedelic therapy models has shown promise for the treatment of specific psychiatric conditions. Mystical-type experiences occasioned by psilocybin have been correlated with therapeutic benefits and long-term improvements in positive mental outlook and attitudes. This article aims to provide an overview of the topic, highlight strengths and weaknesses in current research, generate novel perspectives and discussion, and consider future avenues for research.

Design: This narrative review was designed to summarise and assess the state of research on psilocybin occasioned mystical-type experiences and applications for the treatment of specific psychiatric conditions.

Results: Contemporary methods on the quantification of mystical-type experiences and their acute subjective effects are discussed. Recent studies provide some understanding of the pharmacological actions of psychedelics although the neurological similarities and differences between spontaneous and psychedelic mystical-type experiences are not well described. Applicability to modern clinical settings is assessed. Potential novel therapeutic applications include use in positive psychology interventions in healthy individuals.

Conclusions: Since 2006 significant advancements in understanding the therapeutic potential of psilocybin-assisted psychotherapy have been made; however, more work is required to understand the neuromechanistic processes and applicability in modern clinical settings. Despite promising results in recent studies, funding issues for clinical trials, legal concerns and socio-cultural resistance provide a counterpoint to experimental evidence.

James, E., Robertshaw, T. L., Hoskins, M., & Sessa, B. (2020). Psilocybin occasioned mystical‐type experiences. Human Psychopharmacology: Clinical and Experimental35(5), e2742; 10.1002/hup.2742
Link to full text

Spotlight commentary: REBUS and the anarchic brain

Abstract

In ‘REBUS and the Anarchic Brain: Towards a Unified Model of the Brain Action of Psychedelics’, Carhart-Harris and Friston offer an important analysis of what the predictive processing framework has to offer our understanding of psychedelic experiences, providing an invaluable ground for psychedelic psychiatry. While applauding this, we encourage paying greater attention to contextual factors shaping extreme experiences and their sequalae, and suggest that the authors’ comparisons with certain non-psychedelic altered states may overlook more informative parallels that can be drawn elsewhere. Addressing both points will prove fruitful, ultimately, in identifying the mechanisms of action of greatest interest in psychedelic experiences.
Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharmacological reviews71(3), 316-344., https://doi.org/10.1093/nc/niaa007
Link to full text

Dynamic coupling of whole-brain neuronal and neurotransmitter systems

Abstract

Remarkable progress has come from whole-brain models linking anatomy and function. Paradoxically, it is not clear how a neuronal dynamical system running in the fixed human anatomical connectome can give rise to the rich changes in the functional repertoire associated with human brain function, which is impossible to explain through long-term plasticity. Neuromodulation evolved to allow for such flexibility by dynamically updating the effectivity of the fixed anatomical connectivity. Here, we introduce a theoretical framework modeling the dynamical mutual coupling between the neuronal and neurotransmitter systems. We demonstrate that this framework is crucial to advance our understanding of whole-brain dynamics by bidirectional coupling of the two systems through combining multimodal neuroimaging data (diffusion magnetic resonance imaging [dMRI], functional magnetic resonance imaging [fMRI], and positron electron tomography [PET]) to explain the functional effects of specific serotoninergic receptor (5-HT2AR) stimulation with psilocybin in healthy humans. This advance provides an understanding of why psilocybin is showing considerable promise as a therapeutic intervention for neuropsychiatric disorders including depression, anxiety, and addiction. Overall, these insights demonstrate that the whole-brain mutual coupling between the neuronal and the neurotransmission systems is essential for understanding the remarkable flexibility of human brain function despite having to rely on fixed anatomical connectivity.

 
Kringelbach, M. L., Cruzat, J., Cabral, J., Knudsen, G. M., Carhart-Harris, R., Whybrow, P. C., … & Deco, G. (2020). Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proceedings of the National Academy of Sciences117(17), 9566-9576., https://doi.org/10.1073/pnas.1921475117
Link to full text

Use of Benefit Enhancement Strategies among 5-Methoxy-N,N-Dimethyltryptamine (5-MeO-DMT) Users: Associations with Mystical, Challenging, and Enduring Effects.

Abstract

5-Methoxy-N,N-Dimethyltryptamine (5-MeO-DMT) is a potent, fast-acting psychedelic. Anecdotal reports from 5-MeO-DMT users suggest that they employ a variety of benefit enhancement (BE) strategies aimed to increase positive effects and decrease any potential challenging effects of the substance, but no empirical study has investigated this claim. We examined the prevalence of BE strategy use using secondary data from a survey of 5-MeO-DMT users (n = 515; Mage = 35.4, SD = 11.7; Male = 79%; White/Caucasian = 86%). Results indicated that BE strategy use was common in this sample. As a secondary aim, we assessed whether the use of BE strategies was associated with acute subjective (i.e., mystical-type, challenging) and persisting effects of 5-MeO-DMT among a subset of respondents who reported using 5-MeO-DMT once in their lifetime (n = 116). Results showed that the use of several BE strategies were associated with significantly more intense mystical-type effects and enduring beliefs about the personal meaning and spiritual significance of their experience, and some BE strategies were associated with less intense or challenging experiences. Data suggests that BE strategies are commonly used, and that the use of BE strategies may be associated with increases in positive mystical-type and enduring effects. The causal influence of BE strategies on acute/persisting effects of 5-MeO-DMT should be examined in longitudinal research.

Lancelotta, R. L., & Davis, A. K. (2020). Use of benefit enhancement strategies among 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) users: Associations with mystical, challenging, and enduring effects. Journal of Psychoactive Drugs, 1-9.,10.1080/02791072.2020.1737763
Link to full text

Psilocybin Therapeutic Research: The Present and Future Paradigm

Abstract

Psilocybin, an active component in “magic mushroom”, may have the potential to meet the therapeutic needs for a number of indications without the addictiveness and overdose risk of other mind-altering drugs, such as cocaine, heroin, alcohol, methamphetamine, and so forth. The need for new therapies is urgent because addiction, overdose, and suicide deaths have risen throughout the United States and around the world. Anecdotal and contemporary pharmacological reports have provided some indication about the therapeutic use of psilocybin for the treatment of mental health disorders such as major depressive disorder and addiction disorders. In this Viewpoint, I summarize the current state of psilocybin therapeutic research and attempt to provide some insight into future directions on which the scientific community may wish to focus.

Kargbo, R. B. (2020). Psilocybin Therapeutic Research: The Present and Future Paradigm. ACS Medicinal Chemistry Letters11(4), 399-402.; 10.1021/acsmedchemlett.0c00048

Link to full text

Subacute Effects of the Psychedelic Ayahuasca on the Salience and Default Mode Networks

Abstract

Background: Neuroimaging studies have just begun to explore the acute effects of psychedelics on large-scale brain networks’ functional organization. Even less is known about the neural correlates of subacute effects taking place days after the psychedelic experience. This study explores the subacute changes of primary sensory brain networks and networks supporting higher-order affective and self-referential functions 24 hours after a single session with the psychedelic ayahuasca.
Methods: We leveraged task-free functional magnetic resonance imaging data 1 day before and 1 day after a randomized placebo-controlled trial exploring the effects of ayahuasca in naïve healthy participants (21 placebo/22 ayahuasca). We derived intra- and inter-network functional connectivity of the salience, default mode, visual, and sensorimotor networks, and assessed post-session connectivity changes between the ayahuasca and placebo groups. Connectivity changes were associated with Hallucinogen Rating Scale scores assessed during the acute effects.
Results: Our findings revealed increased anterior cingulate cortex connectivity within the salience network, decreased posterior cingulate cortex connectivity within the default mode network, and increased connectivity between the salience and default mode networks 1 day after the session in the ayahuasca group compared to placebo. Connectivity of primary sensory networks did not differ between groups. Salience network connectivity increases correlated with altered somesthesia scores, decreased default mode network connectivity correlated with altered volition scores, and increased salience default mode network connectivity correlated with altered affect scores.
Conclusion: These findings provide preliminary evidence for subacute functional changes induced by the psychedelic ayahuasca on higher-order cognitive brain networks that support interoceptive, affective, and self-referential functions.

Pasquini, L., Palhano-Fontes, F., & de Araujo, D. B. (2019). Subacute effects of the psychedelic ayahuasca on the salience and default mode networks. medRxiv, 19007542., https://doi.org/10.1177/0269881120909409
Link to full text

N,N-dimethyltryptamine reduces infarct size and improves functional recovery following transient focal brain ischemia in rats

Abstract

Background and purpose: N,N-dimethyltryptamine (DMT) is an endogenous ligand of the Sigma 1 receptor (Sig-1R) with documented in vitro cytoprotective properties against hypoxia. Our aim was to demonstrate the in vivo neuroprotective effect of DMT following ischemia-reperfusion injury in the rat brain.

Methods: Transient middle cerebral occlusion (MCAO) was induced for 60 min in male Wistar rats using the filament occlusion model under general anaesthesia. Before the removal of the filament the treatment group (n = 10) received an intra-peritoneal (IP) bolus of 1 mg/kg-body weight (bw) DMT dissolved in 1 ml 7% ethanol/saline vehicle, followed by a maintenance dose of 2 mg/Kg-bw/h delivered over 24 h via osmotic minipumps. Controls (n = 10) received a vehicle bolus only. A third group (n = 10) received a Sig-1R antagonist (BD1063, 1 mg/kg-bw bolus +2 mg/kg-bw/h maintenance) in parallel with the DMT. Lesion volume was measured by MRI 24 h following the MCAO. Shortly after imaging the animals were terminated, and the native brains and sera were removed. Four rats were perfusion fixed. Functional recovery was studied in two separate group of pre-trained animals (n = 8-8) using the staircase method for 30 days. The expression levels of proteins involved in apoptosis, neuroplasticity and inflammatory regulation were assessed by real-time qPCR and ELISA.

Results: DMT treated rats were characterized by lower ischemic lesion volume (p = .0373), and better functional recovery (p = .0084) compared to the controls. Sig-1R was expressed both in neurons and in microglia in the peri-infarct cortex, and the DMT induced change in the lesion volume was hindered by BD1063. Lower APAF1 expression (mRNA and protein) and higher BNDF levels were documented on DTM, while decreased TNF-α, IL1-β, IL-6 and increased IL-10 expressions indicated the compound’s anti-inflammatory potential.

Conclusion: Our results indicate a Sig-1R dependent reduction of the ischemic brain injury following exogenous DMT administration in rats, presumably through a combined anti-apoptotic, pro-neurotrophic and anti-inflammatory treatment effect.

Nardai, S., László, M., Szabó, A., Alpár, A., Hanics, J., Zahola, P., Merkely, B., Frecska, E., & Nagy, Z. (2020). N,N-dimethyltryptamine reduces infarct size and improves functional recovery following transient focal brain ischemia in rats. Experimental neurology, 327, 113245. https://doi.org/10.1016/j.expneurol.2020.113245

Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Management of Psychedelic-Related Complications - Online Event - Nov 20th