OPEN Foundation

OPEN Foundation

Ayahuasca Shamanism in the Amazon and Beyond

Ayahuasca_shamanism

Beatriz Caiuby Labate and Clancy Cavnar offer an in-depth exploration of how Amerindian epistemology and ontology concerning indigenous shamanic rituals of the Amazon have spread to Western societies, and of how indigenous, mestizo, and cosmopolitan cultures have engaged with and transformed these forest traditions. The volume focuses on the use of ayahuasca, a psychoactive drink essential in many indigenous shamanic rituals of the Amazon. Ayahuasca use has spread far beyond its Amazonian origin, spurring a variety of legal and cultural responses in the countries to which it has spread. The essays in this volume look at how these responses have influenced ritual design and performance in traditional and non-traditional contexts, how displaced indigenous people and rubber tappers are engaged in the creative reinvention of rituals, and how these rituals help build ethnic alliances and cultural and political strategies for their marginalized position. Some essays explore important classic and contemporary issues in anthropology, including the relationship between the expansion of ecotourism and ethnic tourism and recent indigenous cultural revival and the emergence of new ethnic identities. The volume also examines trends in the commodification of indigenous cultures in post-colonial contexts, the combination of shamanism with a network of health and spiritually related services, and identity hybridization in global societies. The rich ethnographies and extensive analysis of these essays will allow deeper understanding of the role of ritual in mediating the encounter between indigenous traditions and modern societies.

Ayahuasca Shamanism in the Amazon and Beyond, door Beatriz Caiuby Labate & Clancy Cavnar (Editors), Oxford Ritual Studies reeks, Oxford University Press, 320 pagina’s.

Lees onze recensie van dit boek
Koop dit boek via bookdepository.com en steun daarmee Stichting OPEN

The Consumption of Psychoactive Plants in Ancient Global and Anatolian Cultures During Religious Rituals: The Roots of the Eruption of Mythological Figures and Common Symbols in Religions and Myths

Abstract

Psychoactive plants which contain hallucinogenic molecules that induce a form of altered states of consciousness (H-ASC) have been widely used during the religious rituals of many cultures throughout the centuries, while the consumption of these plants for spiritual and religious purposes is as old as human history. Some of those cultures were shaman and pagan subcultures; African native religions; Bwiti Cult; South American native religions; Amazon Cultures; Central American Cultures; Mexican subcultures; Aztec, Maya and Inca; Wiccan and witch subcultures; Satanists; American Indians; Greek and Hellenistic cultures; Sufis; Hassan Sabbah’s Hashissins; Hindu, Indian and Tibetan cultures; some of the Nordic subcultures etc. Some of the psychoactive ingredients of the plants that were used during these religious rituals were; narcotic analgesics (opium), THC (cannabis), psilocybin (magic mushrooms), mescaline (peyote), ibogaine (Tabernanthe iboga), DMT (Ayahuasca and phalaris species), Peganum harmala, bufotenin, muscimol (Amanita muscaria), thujone (absinthe, Arthemisia absinthium), ephedra, mandragora, star lotus, Salvia divinorum etc. The main purposes of the practice of these plants were: spiritual healing; to contact with spirits; to contact with the souls of ancestors; to reach enlightenment (Nirvana or Satori); to become a master shaman, pagan or witch; to reach so-called-other realities, etc. Such “psychedelic-philosophical plant rituals” changed participating persons’ psychology, philosophy and personality to a great degree. In these two successive articles, the consumption of psychedelic plants during religious rituals is reviewed and it is hypothesized that the images, Figures, illusions and hallucinations experienced during these “plant trips” had a great impact on the formation and creation of many Figures, characters, creatures, archetype images that exist not only in the mythology, but also in many religions, as well, such as angels, demons, Satan, mythological creatures, gods, goddesses etc. In the Middle East and Anatolia, within many hermetic and pagan religions, Greek and Hellenic cultures psychoactive plant use was a serious part of the religious rituals, such as Dionysian rituals or Witch’s’ Sabbaths. Although the impact of the “psychedelic experience and imagination” was enormous to the configuration of many religious and mythological characters, and archetypes, this fact has been underestimated and even unnoticed by many historians and anthropologists, because of the quasi-ethical trends of “anti-drug-brain-washed Western Societies”.
Sayin, H. U. (2014). The Consumption of Psychoactive Plants in Ancient Global and Anatolian Cultures During Religious Rituals: The Roots of the Eruption of Mythological Figures and Common Symbols in Religions and Myths. NeuroQuantology, 12(2), 276-296. https://dx.doi.org/10.14704/nq.2014.12.2.753
Link to full text

Efficacy of Intravenous Ketamine for Treatment of Chronic Posttraumatic Stress Disorder

Abstract

Importance  Few pharmacotherapies have demonstrated sufficient efficacy in the treatment of posttraumatic stress disorder (PTSD), a chronic and disabling condition.

Objective  To test the efficacy and safety of a single intravenous subanesthetic dose of ketamine for the treatment of PTSD and associated depressive symptoms in patients with chronic PTSD.

Design, Setting, and Participants  Proof-of-concept, randomized, double-blind, crossover trial comparing ketamine with an active placebo control, midazolam, conducted at a single site (Icahn School of Medicine at Mount Sinai, New York, New York). Forty-one patients with chronic PTSD related to a range of trauma exposures were recruited via advertisements.

Interventions  Intravenous infusion of ketamine hydrochloride (0.5 mg/kg) and midazolam (0.045 mg/kg).

Main Outcomes and Measures  The primary outcome measure was change in PTSD symptom severity, measured using the Impact of Event Scale–Revised. Secondary outcome measures included the Montgomery-Asberg Depression Rating Scale, the Clinical Global Impression–Severity and –Improvement scales, and adverse effect measures, including the Clinician-Administered Dissociative States Scale, the Brief Psychiatric Rating Scale, and the Young Mania Rating Scale.

Results  Ketamine infusion was associated with significant and rapid reduction in PTSD symptom severity, compared with midazolam, when assessed 24 hours after infusion (mean difference in Impact of Event Scale–Revised score, 12.7 [fusion_builder_container hundred_percent=”yes” overflow=”visible”][fusion_builder_row][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”][95% CI, 2.5-22.8]; P = .02). Greater reduction of PTSD symptoms following treatment with ketamine was evident in both crossover and first-period analyses, and remained significant after adjusting for baseline and 24-hour depressive symptom severity. Ketamine was also associated with reduction in comorbid depressive symptoms and with improvement in overall clinical presentation. Ketamine was generally well tolerated without clinically significant persistent dissociative symptoms.

Conclusions and Relevance  This study provides the first evidence for rapid reduction in symptom severity following ketamine infusion in patients with chronic PTSD. If replicated, these findings may lead to novel approaches to the pharmacologic treatment of patients with this disabling condition.

Feder, A., Parides, M. K., Murrough, J. W., Perez, A. M., Morgan, J. E., Saxena, S., … & Charney, D. S. (2014). Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA psychiatry, 71(6), 681-688. https://dx.doi.org/10.1001/jamapsychiatry.2014.62
Link to full text[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Psychoactive Plants: A Neglected Area of Ethnobotanical Research in Southern Africa (Review)

Abstract

Psychoactive plant research has been actively pursued over the last century around the world, particularly in the Americas. Yet, southern Africa has often been regarded to have relatively few psychoactive plant species of cultural importance with little research conducted on the region’s potential psychoactive flora. However, in the last decade, renewed interest has occurred in the study of psychoactive plants from southern Africa. Recent anthropological studies have demonstrated the significance of psychoactive plant medicines in the initiation process of southern African traditional healers and in treating mental illness, while numerous ethnopharmacological studies have screened southern African plants for psychotropic activity, with promising new findings and research directions resulting. Yet, despite this great progress, the indigenous cultural (ritual) uses of psychoactive plants by the indigenous people of southern Africa remains a neglected area of ethnobotanical research. Aspects identified as requiring further study include: the indigenous cultural understandings of mental illness and psychoactive plants, the role of psychoactive plants in the spiritual practices of southern African traditional healers, the influence of various psychoactive plant species used in traditional formulas and the folklore and mythology relating to indigenous psychoactive plants. Thus, much is still to be learnt and documented from the southern African traditional healers regarding their worldview and their botanical, diagnostic, methodological and healing knowledge that can provide insights into the treatment of mental illness and the actions of psychoactive plants.

Jean-Francois, S. (2014). Psychoactive Plants: A Neglected Area of Ethnobotanical Research in Southern Africa (Review). STUDIES ON ETHNO-MEDICINE, 8(2), 165-172.
Link to full text

Hallucinogen persisting perception disorder and the serotonergic system: A comprehensive review including new MDMA-related clinical cases

Abstract

Hallucinogen persisting perception disorder (HPPD) is a drug-induced condition associated with inaccurate visual representations. Since the underlying mechanism(s) are largely unknown, this review aims to uncover aspects underlying its etiology. Available evidence on HPPD and drug-related altered visual processing was reviewed and the majority of HPPD cases were attributed to drugs with agonistic effects on serotonergic 5-HT2A receptors. Moreover, we present 31 new HPPD cases that link HPPD to the use of ecstasy (MDMA), which is known to reverse serotonin reuptake and acts as agonist on 5-HT2A receptors. The available evidence suggests that HPPD symptoms may be a result from a misbalance of inhibitory-excitatory activity in low-level visual processing and GABA-releasing inhibitory interneurons may be involved. However, high co-morbidities with anxiety, attention problems and derealization symptoms add complexity to the etiology of HPPD. Also, other perceptual disorders that show similarity to HPPD cannot be ruled out in presentations to clinical treatment. Taken together, evidence is still sparse, though low-level visual processing may play an important role. A novel finding of this review study, evidenced by our new cases, is that ecstasy (MDMA) use may also induce symptoms of HPPD.

Litjens, R. P., Brunt, T. M., Alderliefste, G. J., & Westerink, R. H. (2014). Hallucinogen persisting perception disorder and the serotonergic system: A comprehensive review including new MDMA-related clinical cases. European Neuropsychopharmacology, 24(8), 1309-1323. https://dx.doi.org/10.1016/j.euroneuro.2014.05.008

Link to full text

Indigenous healing practice: Opening a discussion

Abstract

The authors examine and discuss the indigenous healing practice using Ayahuasca, an entheogen, which a concoction of plants and bark that induces a “vision state”. This shamanic healing ceremony is used today among indigenous peoples of South America and Southwest of the United States. The authors examine the phenomena of shamanism and the historic suppresion of such practices by missionaries, codified into law in the U.S. (Indian Offenses Act). Despite these efforts to suppress such ceremonies, they persist even today and are viewed as an alternative or complement to western practices that often fail to address the persisting problems many indigenous peoples face. The authors cite the National Catholic Bishops Pastoral Letter, Heritage and Hope: Evangelization in the United States (1991) as an invitation for dialogue to examine the question, “Is there room in pastoral counseling for shamanism?” This paper hopes to open a dialogue between pastoral counselors and traditional indigenous practitioners well aware of the sensitive nature of such an endeavor. At best our intention is to make pastoral care and counseling professionals aware of such practices common in indigenous communities.
Prue, R., & Voss, R. W. (2014). Indigenous healing practice: Opening a discussion. Journal of Pastoral Care & Counseling, 68(1).
Link to full text

Pharmacology of Hallucinations: Several Mechanisms for One Single Symptom?

Abstract

Hallucinations are complex misperceptions, that principally occur in schizophrenia or after intoxication induced by three main classes of drugs: psychostimulants, psychedelics, and dissociative anesthetics. There are at least three different pharmacological ways to induce hallucinations: (1) activation of dopamine D2 receptors (D2Rs) with psychostimulants, (2) activation of serotonin 5HT2A receptors (HT2ARs) with psychedelics, and (3) blockage of glutamate NMDA receptors (NMDARs) with dissociative anesthetics. In schizophrenia, the relative importance of NMDAR and D2R in the occurrence of hallucinations is still debated. Slight clinical differences are observed for each etiology. Thus, we investigated whether the concept of hallucination is homogenous, both clinically and neurobiologically. A narrative review of the literature is proposed to synthesize how the main contributors in the field have approached and tried to solve these outstanding questions. While some authors prefer one explanatory mechanism, others have proposed more integrated theories based on the different pharmacological psychosis models. In this review, such theories are discussed and faced with the clinical data. In addition, the nosological aspects of hallucinations and psychosis are addressed. We suggest that if there may be common neurobiological pathways between the different pharmacological systems that are responsible for the hallucinations, there may also be unique properties of each system, which explains the clinical differences observed.

Rolland, B., Jardri, R., Amad, A., Thomas, P., Cottencin, O., & Bordet, R. (2014). Pharmacology of Hallucinations: Several Mechanisms for One Single Symptom? Biomed Research International. http://dx.doi.org/10.1155/2014/307106
Link to full text

In Memoriam Alexander ‘Sasha’ Shulgin

With great sadness, the OPEN foundation would like to acknowledge the death of maverick chemist Alexander “Sasha” Shulgin, who passed away on June 2nd. Dubbed “the godfather of Ecstasy,” Shulgin was credited with introducing MDMA to psychologists in the late 70’s, years before the drug hit the global dance scene.

However MDMA was only one of hundreds of chemicals Shulgin synthesized during his lengthy career. After earning his biochemistry degree from UC Berkeley in 1954, he worked briefly as research director at BioRad Laboratories before becoming a senior research chemist at Dow Chemical Company, where he synthesized the first biodegradable insecticide, Zectran.

Because Shulgin made Dow a sizeable profit, he was granted the freedom to create and patent new drugs. He chose psychedelics. In the late 1950s, Shulgin experimented with mescaline, which he wrote revealed “that our entire universe is contained in the mind and spirit.” But his interest in pharmacology was sparked years earlier. While in the Navy as a teenager, he got a shot of morphine for an injury, making him wonder how drugs altered consciousness. This passion for understanding the human mind and how to unlock its potential—chemically, of course—would mark his career.

In 1966, Shulgin left Dow Chemical to freelance as a consultant and for the following decades worked from his backyard lab in Berkeley, California. In 1976, he heard about MDMA, which was first synthesized at Merck in 1912 as an unimportant precursor in a new synthesis for haemostatic substances and subsequently shelved. He went on to synthesize it, and discovered it was a powerful empathogen, “with emotional and sensual overtones.” He then introduced it to a therapist friend and word spread quickly both inside and outside the therapeutic community. Without MDMA, the dance music scene of the last 30 years would have looked entirely different.

Shulgin was a fixture in the psychedelic subculture that believed in better living through chemistry. He contributed a rational, scientific perspective to the field, coupled with enthusiasm for thorough self-experimentation.

When interviewed about the abuse potential of MDMA, which became a scheduled drug in 1985, Shulgin was quoted as saying it was “as real as the abuse potential of anything that gives pleasure and satisfaction. This applies to MDMA as much as it does to skydiving, mountain climbing and skiing.”

Shulgin died of several health complications after years of poor health, and had recently been diagnosed with terminal liver cancer. He was 88. His wife, Ann Shulgin, with whom he shared thousands of psychedelic experiences, survives him.

Autism and LSD-25 – Freeing the Most Imprisoned Minds?

In the early sixties, a number of controversial clinical investigations were published involving the administration of LSD-25 (lysergic acid diethylamide) to young children said to suffer from severe forms of autism, or childhood-onset schizophrenia (COS), which were then regarded as closely related [1]. The reason for conducting the studies with young children was the supposed similarity between autism and COS. Prompted by the apparent results of studies conducted with LSD-25 and adult mute catatonic patients by Cholden, Kurland, and Savage (1955), hypotheses were constructed to research a possible therapeutic utility. “The goal in these therapeutic efforts”, said Bender in an article published in Recent Advances in Biological Psychiatry (1962), “has been to modify the secondary symptomatology associated with retarded, regressed, and disturbed behavior of the children”. The larger part of the children treated with LSD in these studies were between six and ten years old and completely unresponsive to all other forms of treatment. That the children couldn’t be treated by other means served, in part, for the justification for using a powerful psychoactive substance in child experiments. Surely this decision would have been criticized by the ethical commission today.

A pharmacological intervention by means of LSD was said to “nudge the lagging maturation” (Bender, 1962) into a (somewhat) normal developmental pattern. How exactly the administration of LSD would accomplish the “freeing of the most imprisoned minds” was still unknown (Mogar & Aldrich, 1969). LSD was supposed to achieve success through “breaking through the autistic defense” (Bender, 1963), and in this way be exceptionally helpful in “areas which are closely related to the process of psychotherapy” (Simmons et al., 1966). Some believed LSD was especially useful at helping patients to “unblock” repressed subconscious material through other psychotherapeutic methods (Cohen, 1959). Therapists took LSD to establish a connection with the experience of schizophrenia. “During the ‘model psychosis’ phase of LSD research when the psychedelic state was considered a chemically-induced schizophrenia”, says pioneer LSD researcher Stanislav Grof (1980), “LSD sessions were recommended as reversible journeys into the experiential world of psychotics which had a unique didactic significance”.

Some researchers, like Freedman et al. (1963), studied LSD for its supposed psychotomimetic (psychotogenic) properties, meaning that the drug mimics the symptoms of psychosis, including delusions and/or delirium, as opposed to merely hallucinations (Sewell et al., 2009). An exacerbation of ‘typical’ symptoms meant an opportunity for studying the (child)schizophrenic condition. Other researchers (Bender et al., 1963; Rolo, et al., 1965) considered the neurological mechanism behind the effect of LSD, which in that time was still highly obscure, as more important than its role as facilitator of the therapeutic process. For instance, LSD attracted theoretical interest as a serotonin inhibitor and an autonomic nervous system stimulant. Bender et al. (1963) concluded that “LSD-25 given daily in oral doses of 100 mcg [2] to pre-puberty autistic schizophrenic children appears to be an effective autonomic and central nervous system stimulant”, and that these changes “appear to be chronic with continuous administration of the drug”. Continuous administration consisted of daily administration over prolonged periods of time, varying from days to several weeks . The most persistent effects of LSD-25 therapy that were published included improved speech behavior, increased emotional responsiveness, positive mood (laughter) and a decrease of compulsions.

But alas, however interesting and attractive these results seemed to be — the evidence didn’t stick. Today studies into the relationship of LSD and autism aren’t being conducted and the results that were produced are regarded as highly controversial, if not completely repudiated. This was in part because, in retrospect, the studies were greatly flawed. The researchers seemed to have brushed over the conceptual controversy too quickly by choosing “not to deal with the controversial issues concerning the definitions and etiological factors of either childhood schizophrenia (1) or the autistic reaction pattern (2)” (Bender et al., 1962). The debate about the correct place of (childhood) autism within the DSM (Diagnostic and Statistical Manual of Mental Disorders) remains problematic to this day (DSM-V), but autism has long been divorced from the umbrella of schizophrenia. Although both disorders share clinical features, clinical psychologists and psychiatrists regard autism to be a separate diagnostic ‘entity’ from schizophrenia. Because LSD was used as a drug for “intensifying pre-existing symptomology” of schizophrenia (Bender et al., 1962), a conceptual detachment from autism would have disturbed the foundation of the results.

Even if the researchers had chosen to ‘deal with the controversy’, in hindsight, sampling would have still ended up being very problematic. The children treated were demographically varied and covered a broad age range. Conflicting significance is given to the relationship between age and drug response, but Bender noted that “in contrast to pre- adolescents, younger children manifest consistently different reactions” (1962). In contrast, Fisher and Castile concluded that “older children were better candidates for psychedelic therapy because verbal communication was possible and also because they tended to be less withdrawn, more schizophrenic than autistic, and displayed more blatant symptomology” (Mogar & Aldrich, 1969). In addition to age, also the symptoms of treated children were heterogeneous and weren’t corrected for severity. There was no randomization, and most studies suffered from fluctuating frequency of administration and dosage. Lastly, the set and setting of the experiments varied strongly.

Although the studies conducted in the sixties had major flaws from an experimental point of view and therefore didn’t hold up to scientific scrutiny, Mogar and Aldrich argue in an article published in Behavioral Neuropsychiatry (1969) that the results considered as a whole do point to a utility of administering LSD to autistic children. “The significance of seemingly contradictory results”, say Mogar and Aldrich, “has often been obscured by the persistent search for static, ‘drug-specific’ reactions to LSD”. This is an interesting point; despite that the results don’t indicate significance in an experimental sense, there may still be a therapeutic utility. Mogar and Aldrich report that the greatest therapeutic benefit was related to “(a) the degree of active therapist involvement with the patient; (b) an opportunity to experience meaningful objects and interpersonal activities; and (c) congenial settings that were reasonably free of artificiality, experimental or medical restrictions, and mechanically administered procedures” (1969). In practice clinical therapy is usually far removed from theory. It could be that testing LSD, itself being a highly unpredictable drug, in combination with the therapy dynamic is too hard to substantiate. Mogar and Aldrich conclude that “the administration of LSD is inextricably embedded in a larger psychosocial process which should be optimized in accordance with particular treatment goals”.

Considering the recent growth of interest into this area of research, these older and rather obscure studies deserve to be excavated from the psychedelic research literature. Researchers at LA BioMed (Los Angeles Biomedical Research Institute) are now constructing a study which is said to test the already established anecdotal therapeutic relationship between MDMA (3,4-methylenedioxy-N-methylamphetamine) and autism in adults. The study is the latest in an expanding program of research into the therapeutic use of MDMA funded by the nonprofit Multidisciplinary Association for Psychedelic Studies (MAPS). “This new study will give us a chance”, says Charles Grob head researcher at LA BioMed (2014), “to determine the actual effects of differing dosages of medication that we know for certain is pure MDMA on adults on the autism spectrum. If the results of this research warrant further investigation, data from this study will be used to design additional clinical trials”. Now that the limitations for research into the psychedelic experience and its therapeutic effects are being removed and LSD is once again an object of study, these previously published results could serve for the production of new hypotheses.


 
[1] See (Abramson, 1960; Bender, et al., 1962; Bender, et al., 1963; Fisher & Castile, 1963; Freedman, et al., 1962; Rolo, et al., 1965; Simmons, et al., 1966).
[2] A common psychedelic dosage of LSD ranges from 100 to 200 mcg, a strong dose being 200 to 600 mcg.
 
References
Abramson, H.A. (Ed.) (1960). The Use of LSD in Psychotherapy. New York: Josiah Macy Foundation.
Bender, L., Faretra, G., & Cobrinik, L. (1963). LSD and UM-L treatment of hospitalized disturbed children. Recent Advances in Biological Psychiatry, 5, 84-92.
Bender, L., Goldschmidt, L., & Sankar, S.D.V. (1962). Treatment of autistic schizophrenic children with LSD-25 and UML-491. Recent Advances in Biological Psychiatry, 4, 170-177.
Cholden, L., Kurland, A., & Savage, C. (1955). Clinical reactions and tolerance to LSD in chronic schizophrenia. Journal of Nervous and Mental Disease, 122, 211-216.
Cohen, S., & Eisner, B. G. (1959). Use of lysergic acid diethylamide in a psychotherapeutic setting. AMA Archives of Neurology & Psychiatry, 81(5), 615-619.
Freedman, A.M., Ebin, E.V., & Wilson, E.A. (1962). Autistic schizophrenic children: An experiment in the use of d-lysergic acid diethylamide (LSD-25). Archives of General Psychiatry, 6, 203-213.
Gettys, T. (2014). MDMA Helps Reduce Social Anxiety for Autistic Adults, and Researchers Want to Find Out How. MAPS. Retrieved at: http://www.maps.org/media/view/mdma_helps_reduce_social_anxiety_for_autistic_adults_and_researchers_w/
Grof, S. (1980). LSD Psychotherapy. California: Hunter House Publishers.
Mogar, E. R., & Aldrich, W. R. (1969). The Use of Psychedelic Agents with Autistic Schizophrenic Children. Behavioral Neuropsychiatry, 1(8), 44-50.
Rolo, A., Krinsky. L.W., Abramson, H.A., & Goldfarb, L. (1965). Preliminary method for study of LSD with children. International Journal of Neuropsychiatry, 1, 552-555.
Sewell, R. A., Ranganathan, M., & D’Souza, D. C. (2009). Cannabinoids and psychosis. International Review of Psychiatry, 21(2), 152-162.
Simmons, J.Q., Leiken, SoJ., Lovaas, Q.I., Schaffer, B., & Perloff, B. (1966). Modification of autistic behavior with LSD-25. The American Journal of Psychiatry, 122, 1201-1211.

Autisme en LSD-25 – Het Bevrijden van de Meest Gevangen Geesten?

In het begin van de jaren zestig zijn er een aantal controversiële klinische studies gepubliceerd waarin jonge kinderen met een autisme en/of ‘childhood-onset schizophrenia’ (COS) [1] diagnose LSD-25 (Lysergeenzuurdi-ethylamide) kregen toegediend. De reden dat deze studies werden uitgevoerd bij jonge kinderen was de veronderstelde gelijkenis van autisme en COS. Eerdere resultaten van onderzoek met LSD bij volwassen catatonische patiënten, gepubliceerd in Journal of Nervous and Mental Disease door Cholden, Kurland en Savage (1955), dienden als inspiratie voor dit onderzoek. “The goal in these therapeutic efforts”, schreef Bender in een artikel gepubliceerd in Recent Advances in Biological Psychiatry (1962), “has been to modify the secondary symptomatology associated with retarded, regressed, and disturbed behavior of the children”. Het grootste gedeelte van de kinderen in deze studies was tussen de zes en tien jaar oud en reageerde niet op andere vormen van therapie. Dat de kinderen niet behandeld konden worden rechtvaardigde volgens de onderzoekers het gebruik van sterke psychoactieve stoffen. Dergelijk onderzoek zou tegenwoordig uiteraard niet zomaar door de ethische commissie worden geaccepteerd.

Een farmacologische interventie door middel van LSD zou de vertraagde ontwikkeling veranderen naar een (enigszins) normaal ontwikkelingspatroon (Bender, 1962). Hoe het toedienen van LSD zou kunnen resulteren in “het bevrijden van de meest gevangen geesten” was echter nog onbekend (Mogar & Aldrich, 1969). LSD zou succesvol kunnen worden ingezet bij de behandeling van autisme vanwege het vermogen “door de autistische verdediging heen te breken” (Bender, 1963), en daarom bijzonder nuttig kunnen zijn in gebieden “closely related to the process of psychotherapy” (Simmons et al., 1966). Sommigen geloofden dat LSD bijzonder bruikbaar was om patiënten te helpen onderdrukt subbewust materiaal te “deblokkeren” in combinatie met andere psychotherapeutische methoden (Cohen, 1959). Ook waren er therapeuten die zelf LSD namen om een diepere bewustwording van de schizofrene ervaring te krijgen. “During the ‘model psychosis’ phase of LSD research when the psychedelic state was considered a chemically-induced schizophrenia”, zegt pionier LSD onderzoeker Stanislav Grof (1980), “LSD sessions were recommended as reversible journeys into the experiential world of psychotics which had a unique didactic significance”.

Sommige onderzoekers, zoals Freedman et al. (1963), onderzochten LSD vanwege de zogenaamde psychotomimetische eigenschappen, waarmee wordt bedoeld dat het middel symptomen van een psychose na zou bootsen, inclusief wanen en delierachtige verschijnselen, in plaats van alleen hallucinaties op te wekken (Sewell et al., 2009). Een versterking van ‘typische’ symptomen betekende de mogelijkheid om de (kinder)schizofrene conditie te bestuderen en mogelijk een therapeutische interventie te ontwikkelen. Andere onderzoekers (Bender et al., 1963; Rolo, et al., 1965) beschouwden de neurologische mechanismen achter de effecten van LSD, die toen nog zeer obscuur waren, als belangrijker dan de rol als facilitator van het therapeutische proces. LSD wekte bijvoorbeeld theoretische interesse omdat het serotonineactiviteit zou kunnen remmen en het autonome zenuwstelsel zou stimuleren. Bender et al. (1963) concludeerden dat “het toedienen van dagelijkse orale doseringen van 100 mcg [2] LSD-25 aan prepuberale autistische schizofrene kinderen effectief lijkt te zijn als een stimulant van het autonome en centrale zenuwstelsel”, en dat deze veranderingen “chronisch lijken te zijn bij een continue toediening van het middel”. Continue toediening bestond uit het dagelijks toedienen, variërend van enkele dagen tot een paar weken. Tot de meest robuuste effecten die werden gepubliceerd behoren een verbeterde spraak, verhoogde emotionele responsiviteit, positievere stemming (veel lachen) en een vermindering van compulsief gedrag.

Maar helaas, hoe interessant en aantrekkelijk deze resultaten ook leken te zijn – het bewijs was niet sterk genoeg. Tegenwoordig zijn er geen studies naar de relatie tussen LSD en autisme en de resultaten van deze eerdere studies worden als zeer controversieel of volledig achterhaald beschouwd. Dit komt gedeeltelijk, achteraf gezien, doordat de studies zeer grote tekortkomingen hadden. De onderzoekers gingen geheel voorbij aan de conceptuele controverse omtrent de definitie van autisme en/of (kinder)schizofrenie (Bender et al., 1962). Het debat over de correcte plaats van autisme binnen de DSM (Diagnostic and Statistical Manual of Mental Disorders) blijft tot op de dag van vandaag problematisch (DSM-V), maar autisme is al lang gescheiden van de psychotische stoornissen. Hoewel beide soorten stoornissen klinische eigenschappen delen beschouwen klinisch psychologen en psychiaters ze tegenwoordig als aparte diagnostische entiteiten. Omdat LSD onder andere werd gebruikt als een versterker van reeds bestaande symptomatologie van schizofrenie (Bender et al., 1962), zou een conceptuele scheiding tussen beide stoornissen de fundering van de resultaten hebben verzwakt.

Zelfs al hadden de onderzoekers gekozen om wel in te gaan op deze controverse, dan was de validiteit van de gebruikte steekproeven in de meeste onderzoeken achteraf gezien zeer problematisch geweest. De kinderen in de onderzoeken waren demografisch en wat leeftijd betreft erg gevarieerd. Niet alle onderzoekers waren het eens over de relatie tussen leeftijd en reactie op het middel, maar Bender stelde dat in tegenstelling tot preadolescenten, jongere kinderen consistent verschillende reacties vertoonden (1962). “Older children”, concludeerden Fisher en Castile daarentegen, “were better candidates for psychedelic therapy because verbal communication was possible and also because they tended to be less withdrawn, more schizophrenic than autistic, and displayed more blatant symptomology” (Mogar & Aldrich, 1969). Daarbij komt dat de symptomen van de behandelde kinderen heterogeen waren en dat er niet werd gecorrigeerd voor de ernst van de symptomen. Er was geen sprake van randomisering en in de meeste studies was er sprake van fluctuerende doseringen en frequentie van toediening. Ten slotte varieerde de set en setting van de experimenten sterk.

Hoewel de studies die in de jaren zestig verricht zijn belangrijke gebreken hadden vanuit een experimenteel oogpunt, beargumenteren Mogar en Aldrich in een artikel dat gepubliceerd is in Behavioral Neuropsychiatry (1969) dat de resultaten, als geheel bekeken, wel aanwijzingen bieden om de potentie van LSD bij de behandeling van autisme nader te onderzoeken. “The significance of seemingly contradictory results”, zeggen Mogar and Aldrich, “has often been obscured by the persistent search for static, ‘drug-specific’ reactions to LSD”. Dit is een interessant punt; ondanks dat de resultaten niet significant zijn in experimentele termen, is er wellicht wel een therapeutisch potentieel. Mogar en Aldrich rapporteren dat sterkere therapeutische effecten gerelateerd waren aan “(a) the degree of active therapist involvement with the patient; (b) an opportunity to experience meaningful objects and interpersonal activities; and (c) congenial settings that were reasonably free of artificiality, experimental or medical restrictions, and mechanically administered procedures” (1969). In de praktijk staat klinische therapie vaak ver van de theorie. Het zou kunnen zijn dat LSD, dat zelf ook een erg onvoorspelbaar middel is, in combinatie met de therapeutische dynamiek gewoonweg moeilijk is om te onderzoeken. “The administration of LSD is inextricably embedded in a larger psychosocial process”, concluderen Mogar en Aldrich, ”which should be optimized in accordance with particular treatment goals”.

Gezien de recente groei van aandacht voor dit onderzoeksveld, kan het nuttig zijn om deze oudere en nogal obscure studies te herevalueren. Onderzoekers van LA BioMed (Los Angeles Biomedical Research Institute) zijn momenteel een studie aan het opzetten waarin de effectiviteit van MDMA (3,4-methylenedioxy-N-methylamphetamine) bij de behandeling van sociale angst bij volwassenen met autisme zal worden onderzocht. Dit is de meest recente ontwikkeling in een groeiend programma van onderzoek naar de therapeutische eigenschappen van MDMA, gefinancierd door de non-profit Multidisciplinary Association for Psychedelic Studies (MAPS). “This new study will give us a chance”, zegt hoofd van het onderzoeksteam Charles Grob (2014), “to determine the actual effects of differing dosages of medication that we know for certain is pure MDMA on adults on the autism spectrum. If the results of this research warrant further investigation, data from this study will be used to design additional clinical trials”. Nu de beperkingen om de psychedelische ervaring en de therapeutische potentie van deze middelen te onderzoeken beginnen weg te vallen, en ook LSD weer opnieuw wordt onderzocht, kunnen de resultaten van deze oudere publicaties dienst doen voor het genereren van nieuwe hypothesen.


 
[1] Zie (Abramson, 1960; Bender, et al., 1962; Bender, et al., 1963; Fisher & Castile, 1963; Freedman, et al., 1962; Rolo, et al., 1965; Simmons, et al., 1966).
[2] Een gebruikelijke dosering LSD varieert van 100 tot 200 mcg, en een sterke dosering van 200 tot 600 mcg.
 
Referenties
Abramson, H.A. (Ed.) (1960). The Use of LSD in Psychotherapy. New York: Josiah Macy Foundation.
Bender, L., Faretra, G., & Cobrinik, L. (1963). LSD and UM-L treatment of hospitalized disturbed children. Recent Advances in Biological Psychiatry, 5, 84-92.
Bender, L., Goldschmidt, L., & Sankar, S.D.V. (1962). Treatment of autistic schizophrenic children with LSD-25 and UML-491. Recent Advances in Biological Psychiatry, 4, 170-177.
Cholden, L., Kurland, A., & Savage, C. (1955). Clinical reactions and tolerance to LSD in chronic schizophrenia. Journal of Nervous and Mental Disease, 122, 211-216.
Cohen, S., & Eisner, B. G. (1959). Use of lysergic acid diethylamide in a psychotherapeutic setting. AMA Archives of Neurology & Psychiatry, 81(5), 615-619.
Freedman, A.M., Ebin, E.V., & Wilson, E.A. (1962). Autistic schizophrenic children: An experiment in the use of d-lysergic acid diethylamide (LSD-25). Archives of General Psychiatry, 6, 203-213.
Gettys, T. (2014). MDMA Helps Reduce Social Anxiety for Autistic Adults, and Researchers Want to Find Out How. MAPS. Retrieved at: http://www.maps.org/media/view/mdma_helps_reduce_social_anxiety_for_autistic_adults_and_researchers_w/
Grof, S. (1980). LSD Psychotherapy. California: Hunter House Publishers.
Mogar, E. R., & Aldrich, W. R. (1969). The Use of Psychedelic Agents with Autistic Schizophrenic Children. Behavioral Neuropsychiatry, 1(8), 44-50.
Rolo, A., Krinsky. L.W., Abramson, H.A., & Goldfarb, L. (1965). Preliminary method for study of LSD with children. International Journal of Neuropsychiatry, 1, 552-555.
Sewell, R. A., Ranganathan, M., & D’Souza, D. C. (2009). Cannabinoids and psychosis. International Review of Psychiatry, 21(2), 152-162.
Simmons, J.Q., Leiken, SoJ., Lovaas, Q.I., Schaffer, B., & Perloff, B. (1966). Modification of autistic behavior with LSD-25. The American Journal of Psychiatry, 122, 1201-1211.

interested in becoming a trained psychedelic-assisted therapist?

Indigenous Talk: Fulni-ô Culture & Jurema - Online Event - Dec 12th