OPEN Foundation

Day: 1 July 2016

Clinical Applications of Hallucinogens: A Review

Abstract

Hallucinogens fall into several different classes, as broadly defined by pharmacological mechanism of action, and chemical structure. These include psychedelics, entactogens, dissociatives, and other atypical hallucinogens. Although these classes do not share a common primary mechanism of action, they do exhibit important similarities in their ability to occasion temporary but profound alterations of consciousness, involving acute changes in somatic, perceptual, cognitive, and affective processes. Such effects likely contribute to their recreational use. However, a growing body of evidence indicates that these drugs may have therapeutic applications beyond their potential for abuse. This review will present data on several classes of hallucinogens with a particular focus on psychedelics, entactogens, and dissociatives, for which clinical utility has been most extensively documented. Information on each class is presented in turn, tracing relevant historical insights, highlighting similarities and differences between the classes from the molecular to the behavioral level, and presenting the most up-to-date information on clinically oriented research with these substances, with important ramifications for their potential therapeutic value.

Garcia-Romeu, A., Kersgaard, B., & Addy, P. H. (2016). Clinical applications of hallucinogens: A review. Experimental and clinical psychopharmacology, 24(4), 229. 10.1037/pha0000084
Link to full text

Synthesis and biological evaluation of N(9)-substituted harmine derivatives as potential anticancer agents

Abstract

A series of N(9)-substituted harmine derivatives were synthesized and evaluated for their anticancer activity on a panel of cancer cell lines, their apoptosis induction and their cell cycle effects. The results showed that N(9)-substituted harmine derivatives had anticancer effects. In particular, N(9)-haloalkyl derivatives 9a-9c and N(9)-acyl harmine derivatives 11c and 11d, with IC50 values less than 1μM, were more potent than doxorubicin against A-549 and/or MCF-7 cell lines. Moreover, structure-activity relationships (SARs) indicated that introducing a haloalkyl or benzenesulfonyl group in the N(9)-position of harmine could significantly increase the anticancer activity. The most active compound (11d) caused cell cycle arrest in the G2/M phase, and induced cell apoptosis in a dose-dependent manner.
Du, H., Tian, S., Chen, J., Gu, H., Li, N., & Wang, J. (2016). Synthesis and biological evaluation of N 9-substituted harmine derivatives as potential anticancer agents. Bioorganic & medicinal chemistry letters26(16), 4015-4019. 10.1016/j.bmcl.2016.06.087
Link to full text

Crafting Music for Altered States and Psychedelic Spaces - Online Event - Jan 22nd