OPEN Foundation

Y. Perl

Neural and subjective effects of inhaled N,N-dimethyltryptamine in natural settings

Abstract

Background: N,N-dimethyltryptamine is a short-acting psychedelic tryptamine found naturally in many plants and animals. Few studies to date have addressed the neural and psychological effects of N,N-dimethyltryptamine alone, either administered intravenously or inhaled in freebase form, and none have been conducted in natural settings.

Aims: Our primary aim was to study the acute effects of inhaled N,N-dimethyltryptamine in natural settings, focusing on questions tuned to the advantages of conducting field research, including the effects of contextual factors (i.e. “set” and “setting”), the possibility of studying a comparatively large number of subjects, and the relaxed mental state of participants consuming N,N-dimethyltryptamine in familiar and comfortable settings.

Methods: We combined state-of-the-art wireless electroencephalography with psychometric questionnaires to study the neural and subjective effects of naturalistic N,N-dimethyltryptamine use in 35 healthy and experienced participants.

Results: We observed that N,N-dimethyltryptamine significantly decreased the power of alpha (8-12 Hz) oscillations throughout all scalp locations, while simultaneously increasing power of delta (1-4 Hz) and gamma (30-40 Hz) oscillations. Gamma power increases correlated with subjective reports indicative of some features of mystical-type experiences. N,N-dimethyltryptamine also increased global synchrony and metastability in the gamma band while decreasing those measures in the alpha band.

Conclusions: Our results are consistent with previous studies of psychedelic action in the human brain, while at the same time the results suggest potential electroencephalography markers of mystical-type experiences in natural settings, thus highlighting the importance of investigating these compounds in the contexts where they are naturally consumed.

Pallavicini, C., Cavanna, F., Zamberlan, F., de la Fuente, L. A., Ilksoy, Y., Perl, Y. S., Arias, M., Romero, C., Carhart-Harris, R., Timmermann, C., & Tagliazucchi, E. (2021). Neural and subjective effects of inhaled N,N-dimethyltryptamine in natural settings. Journal of psychopharmacology (Oxford, England), 35(4), 406–420. https://doi.org/10.1177/0269881120981384

Link to full text

A mechanistic model of the neural entropy increase elicited by psychedelic drugs

Abstract

Psychedelic drugs, including lysergic acid diethylamide and other agonists of the serotonin 2A receptor (5HT2A-R), induce drastic changes in subjective experience, and provide a unique opportunity to study the neurobiological basis of consciousness. One of the most notable neurophysiological signatures of psychedelics, increased entropy in spontaneous neural activity, is thought to be of relevance to the psychedelic experience, mediating both acute alterations in consciousness and long-term effects. However, no clear mechanistic explanation for this entropy increase has been put forward so far. We sought to do this here by building upon a recent whole-brain model of serotonergic neuromodulation, to study the entropic effects of 5HT2A-R activation. Our results reproduce the overall entropy increase observed in previous experiments in vivo, providing the first model-based explanation for this phenomenon. We also found that entropy changes were not uniform across the brain: entropy increased in some regions and decreased in others, suggesting a topographical reconfiguration mediated by 5HT2A-R activation. Interestingly, at the whole-brain level, this reconfiguration was not well explained by 5HT2A-R density, but related closely to the topological properties of the brain’s anatomical connectivity. These results help us understand the mechanisms underlying the psychedelic state and, more generally, the pharmacological modulation of whole-brain activity.

Herzog, R., Mediano, P., Rosas, F. E., Carhart-Harris, R., Perl, Y. S., Tagliazucchi, E., & Cofre, R. (2020). A mechanistic model of the neural entropy increase elicited by psychedelic drugs. Scientific reports, 10(1), 17725. https://doi.org/10.1038/s41598-020-74060-6

Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Management of Psychedelic-Related Complications - Online Event - Nov 20th