Biocatalytic production of psilocybin and derivatives in tryptophan synthase-enhanced reactions
Abstract
Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) is the main alkaloid of the fungal genus Psilocybe, the so-called “magic mushrooms.” The pharmaceutical interest in this psychotropic natural product as a future medication to treat depression and anxiety is strongly re-emerging. Here, we present an enhanced enzymatic route of psilocybin production by adding TrpB, the tryptophan synthase of the mushroom Psilocybe cubensis, to the reaction. We capitalized on its substrate flexibility and show psilocybin formation from 4-hydroxyindole and l-serine, which are less cost-intensive substrates, compared to the previous method. Furthermore, we show enzymatic production of 7-phosphoryloxytryptamine (isonorbaeocystin), a non-natural congener of the Psilocybe alkaloid norbaeocystin (4-phosphoryloxytryptamine), and of serotonin (5-hydroxytryptamine) by means of the same in vitro approach.
Blei, F., Baldeweg, F., Fricke, J., & Hoffmeister, D. (2018). Biocatalytic Production of Psilocybin and Derivatives in Tryptophan Synthase‐Enhanced Reactions. Chemistry–A European Journal, 24(40), 10028-10031., 10.1002/chem.201801047.
Link to full text