Ketamine is causing a lot of ‘buzz’ inside neuropsychiatry at the moment. Duman and Aghajanian called the substance in Science (2012) “the biggest breakthrough in depression research in a half century”. The APA (American Psychiatric Association) is dedicating a surprisingly large amount of time discussing the new implications concerning ketamine in the 167th ‘annual meeting’ this year (2014). Abrams says in The Atlantic (2012) that the effects of ketamine suggest that depression isn’t caused by a chemical imbalance in the brain, as is believed by most neuropsychologist, but by damage to brain cells caused by chronic stress. Ketamine is said to stimulate the process of synaptogenesis (the formation of synapses in the brain), which repairs the damage caused by stress (Zarate 2006, Duman 2012). These findings could eventually become the base for a “synaptogenic hypothesis” of depression (Duman, 2012).
Ketamine is used very diversely in scientific studies [1], which shows well how contingent the ideas surrounding a substance can be. In 1962, eight years before the American president Nixon signed the Controlled Substances Act and shut the door for research of the effects of substances like LSD, psilocybin and mescaline, ketamine was synthesised in the Parke Davis Lab in Detroit. Ketamine is considered an arylcyclohexylamine in chemistry, the same category that phencyclidine (PCP) belongs to. Ketamine, then still CI581, was initially explained as a fast-acting anesthetic for general use. It was used in the instance of severe damage to the skin caused by radiation or burns. Children were given ketamine when they had bad reactions to other tranquilizing substances or when a more superficial anesthesia was called for. Ketamine’s effects were popular in animal medicine as well. In 1970 ketamine started playing a significant role in the Vietnam war. Upon return, many veterans told stories about odd mental experiences which they had during operations for their injuries. It’s only when ketamine started to be used recreationaly [2] that the dissociative effect, the literal separation of mind and body, came to the forefront.
In 1973, near the end of the Vietnam war, the Iranian psychiatrist E. Khorramzadeh published an article on the use of ketamine during psychotherapy in Psychosomatic Journal. In South-America, this led to the emergence of several therapies which used ketamine as a means for psychoanalytical regression. John C. Lilly published his phenomenological magnus opus The Scientist in 1978, which made his own experiments as well as that of others in the field available for philosophical scrutiny. Lilly came to the conclusion that ketamine opens the door for ‘metaprogramming’ [3], a process which he describes as the conscious manipulation of the synapses to cause changes in behavior and personality patterns. In that same year Journeys into the Bright World by Marcia Moore and her husband Howard Alltounian appeared, which explored the possibility of using ketamine in Jungian psychotherapy. Krupitsky brought ketamine together with addiction therapy in 1985. Krupitsky, head of the research laboratory for addiction and psychopharmacology in St. Petersburg, developed a ‘psychedelic therapy’ which, to his own surprise, resulted in complete abstinence of at least a year in 66% of his alcohol addicted patients (1995). In collaboration with Strassman, famous for his monumental study into DMT and the book The Spirit Molecule (2000) which followed it, Krupitsky published the results of a study into ketamine and heroin addiction. Although ketamine did not show lasting effects of abstinence, which the researchers sought, there was a noticeable improvement in the withdrawal process. They accredited these results to a positive transformation of the self-concept as well as in emotional, moral and spiritual attitudes.
Karl Jansen, eminent ketamine researcher and proponent of further psychotherapeutic integration of the experiences induced by ketamine, adds an important layer to the work of Krupitsky. He proposes that the experience which ketamine offers is therapeutic in itself. Jansen draws a comparison between ketamine and the state of consciousness that people experience ‘near death’. According to Jansen this experience, like with ketamine, has effects on personality; it increases altruistic behavior, decreases the fear of death and makes people less materialistic (2001).
Modern neuroscientist go a step further than Krupitsky; that ketamine is itself effectively therapeutic, according to them has got little to do with the psychedelic experience. The experience as therapeutic process is replaced with a neurochemical mechanism. The characteristics of the experience or the impressions which people extract out of it don’t account for the therapeutic effect, according to these neuroscientists the therapeutic effect is caused by an intervention outside of consciousness. The qualities which are desired in the eyes of psychonauts [4] are annoying side-effects which they have to get rid of to be able to use ketamine as an antidepressant. According to researchers of other psychedelic substances ketamine’s growing success is a good opportunity to get attention for their results. However, it remains to be seen if this doesn’t devalue research into the psychedelic experience.
The effects that ketamine appears to have on the mental condition of individuals with a depression diagnosis were introduced by researchers like John Krystal and Karl Jansen, but until Zarate et al. (2006) there weren’t any robust double-blind placebo controlled studies conducted. Zarate et al. found a strong and fast antidepressant effect with a single dose of ketamine. Unfortunately the amount of time that the effects lasted still varied too much, from two days to two weeks. They concluded that ketamine, at the present moment, should at least play a role in acute suicidal episodes. It’s still unknown if or how the antidepressant effect can be lengthened. Baumeister et al. conducted a meta-analysis, published in Therapeutic Advances in Psychopharmacology (2014), in which they present evidence for the effects of ketamine in the treatment of depression, even when study samples were still relatively small. In any case, the results support the further exploration of administering ketamine to individuals with a severe and therapy resistant depression diagnosis. Ruud Kortekaas, a Dutch neuroscientist at the UMCG (Universitair Medisch Centrum Groningen), is now conducting a study into the long term effects (twenty weeks) of ketamine administration to people who don’t react [5] to regular antidepressants. Kortekaas attributes the effects of ketamine in his patients to a heightened activity in the prefrontal lobe. “It’s like all of those rusty taps in the brain”, says Kortekaas in the Volkskrant (Mudde, 2012), “are completely opened in one go. Often patients experience a strong improvement within several hours. Substances like Prozac, if they work, only start having effects after weeks. Here there is an immediate effect which lasts for days, in small pilot studies in eight out of ten patients”. Ketamine stimulates, in rather low dosages, the process of synaptogenesis which increases the plasticity of the brain (Zarate 2006, Duman 2012). Rasmussen et al. published in Journal of Psychopharmacology (2013) that a low dose of ketamine intravenously is effective in alleviating depressive symptoms in half of their subjects. Rupert McShane, researcher at Oxford Health NHS Foundation Trust, even rapports an effect of several months in a small study published in Journal of Psychopharmacology (2012). In Kortekaas’s study the focus will be on examining the different nuances of different dosages. The study is unique because an oral form of administering ketamine was choses while most other studies based their results on intravenous, intramuscular or nasal forms. An oral form will, according to Kortekaas, result in a strong growth of ketamine’s applicability as antidepressant. Also, the low dosages which are used in the study are hardly psychoactive, and therefore will almost have no influence on normal functioning. The study is set up as a randomized controlled trial (RCT) with 100 participants (50 placebo) in which individuals will receive a functional magnetic resonance imaging scan (fMRI) before ketamine administration and after completing three weeks. “If this study is successful”, says Kortekaas, “it would mean the first step in getting a large amount of people, which don’t react to conventional substances, back into society”. “It’s exciting”, says psychiatrist and neurobiologist Duman (2012), “the hope is that this new information about ketamine is really going to provide a whole array of new targets that can be developed that ultimately provide a much better way of treating depression”.
There aren’t a lot of substances which had its utility reconsidered as often as ketamine. Moreover, the different paradigms surrounding ketamine aren’t mutually exclusive. It’s possible that the same substance could be regarded as an antidepressant in low dosages, a psychedelic in higher dosages and in the highest dosage range a total anesthetic. The nuances between these states must be carefully examined in the future, certainly when ketamine will become available to greater amounts of people as an antidepressant.
[1] Ketamine as a model for schizophrenia (Fletcher et al., 2006), ‘body ownership’ (Fletcher et al., 2011), analgesic (Menigaux et al., 2001), ‘sense of agency’ (Moore et al., 2013), perception of time (Coul et al., 2011), morphine synergism (Schulte et al., 2004).
[2] Recreational use of ketamine was first documented in the beginning of the 70s in the underground publication The Fabulous Furry Freak Brothers.
[3] He borrowed this term from computer science where metaprogramming is the writing of a computer program which itself is able to write or manipulate programs.
[4] Psychonautics refer to the paradigm in which the phenomenology of psychoactive substances is examined.
[5] Individuals that don’t react to SSRI’s (selective serotonin reuptake inhibitors) and TCA’s (tricyclic antidepressant).
References
Abrams, L. (2012). The Biggest Breakthrough in Depression Research in 50 years is… Ketamine? The Atlantic. Retrieved at: http://www.theatlantic.com/health/archive/2012/10/the-biggest-breakthrough-in-depression-research-in-50-years-is-ketamine/263400/
American Psychiatric Association. (2014). APA 167th annual meeting proceedings. Washington, DC: Author. Retrieved at: http://psychnews.psychiatryonline.org/newsarticle.aspx?articleid=1816463
Baumeister, D., Barnes, G., Giaroli, G., & Tracy, D. (2014). Classical hallucinogens as antidepressants? A review of pharmacodynamics and putative clinical roles. Therapeutic Advances in Psychopharmacology, 2045125314527985.
Coull, J. T., Morgan, H., Cambridge, V. C., Moore, J. W., Giorlando, F., Adapa, R., Corlett, P. R., Fletcher, P. C. (2011). Ketamine perturbs perception of the flow of time in healthy volunteers. Psychopharmacology (Berl) 218(3):543-56.
Diamond, P. R., Farmery, A. D., Atkinson, S., Haldar, J., Williams, N., Cowen, P. J., … & McShane, R. (2014). Ketamine infusions for treatment resistant depression: a series of 28 patients treated weekly or twice weekly in an ECT clinic. Journal of Psychopharmacology, 0269881114527361.
Duman, R. S., & Aghajanian, G. K. (2012). Synaptic dysfunction in depression: potential therapeutic targets. Science, 338(6103), 68-72.
Fletcher, P. C., Honey, G. D. (2006), Schizophrenia, ketamine and cannabis: evidence of overlapping memory deficits. Trends in the Cognitive Sciences 10(4):167-174.
Jansen, K. (2001). Ketamine: Dreams and Realities. MAPS (Multidisciplinary Association for Psychedelic Studies).
Khorramzadeh, E., & Lotfy, A. O. (1973). The use of ketamine in psychiatry. Psychosomatics, 14(6), 344-346.
Krupitsky E., Burakov, A., Romanova, T., Dunaevsky, I., Strassman, R., Grinenko A. (2002). Ketamine psychotherapy for heroin addiction: immediate effects and two-year follow-up. Journal of Substance Abuse Treatment, 23, 273-283.
Krupitsky, E. M. (1995). Ketamine psychedelic therapy (KPT) of alcoholism and neurosis. In: Yearbook of the European College for the Study of Consciousness (Leuner, H., ed.), pp.113-121. Berlin: Verlag Fur Wissenschaft und Bildung.
Lilly, C. J. (1978). The Scientist: A Novel Autobiography (1st ed.). Philadelphia: Lippincott.
Moore, M., & Alltounian, H. (1978). Journeys into the Bright World. Gloucester: Para Research Inc.
Moore, J. W., Dickinson, A., Fletcher, P. C. (2011). Sense of agency, associative learning, and schizotypy. Conscious Cogn 20(3):792-800.
Moore, J. W., Cambridge, V. C., Morgan, H., Giorlando, F., Adapa, R., Fletcher, P. C. (2013). Time, action and psychosis: using subjective time to investigate the effects of ketamine on sense of agency. Neuropsychologia 51(2):377-84.
Morgan, H. L., Turner, D. C., Corlett, P. R., Absalom, A. R., Adapa, R., Arana, F. S., Pigott, J., Gardner, J., Everitt, J., Haggard, P., Fletcher, P. C. (2011). Exploring the impact of ketamine on the experience of illusory body ownership. Biol Psychiatry 69(1):35-41.
Mudde, T. (2012). Trippen voor de Wetenschap. Volkskrant. Retrieved at: http://www.volkskrant.nl/vk/nl/2844/Archief/archief/article/detail/3327458/2012/10/06/Trippen-voor-de-wetenschap.dhtml
Rasmussen, K. G., Lineberry, T. W., Galardy, C. W., Kung, S., Lapid, M. I., Palmer, B. A. & Frye, M. A. (2013). Serial infusions of low-dose ketamine for major depression. Journal of Psychopharmacology, 2