OPEN Foundation

K. Rentsch

Development and validation of an LC-MS/MS method to quantify lysergic acid diethylamide (LSD), iso-LSD, 2-oxo-3-hydroxy-LSD, and nor-LSD and identify novel metabolites in plasma samples in a controlled clinical trial

Abstract

BACKGROUND:
Lysergic acid diethylamide (LSD) is a widely used recreational drug. The aim of this study was to develop and validate a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the quantification of LSD, iso-LSD, 2-oxo-3-hydroxy LSD (O-H-LSD), and nor-LSD in plasma samples from 24 healthy subjects after controlled administration of 100 μg LSD in a clinical trial. In addition, metabolites that have been recently described in in vitro studies, including lysergic acid monoethylamide (LAE), lysergic acid ethyl-2-hydroxyethylamide (LEO), 2-oxo-LSD, trioxylated-LSD, and 13/14-hydroxy-LSD, should be identified.
METHODS:
Separation of LSD and its metabolites was achieved on a reversed phase chromatography column after turbulent-flow online extraction. For the identification and quantification, a triple-stage quadrupole LC-MS/MS instrument was used.
RESULTS:
The validation data showed slight matrix effects for LSD, iso-LSD, O-H-LSD, or nor-LSD. Mean intraday and interday accuracy and precision were 105%/4.81% and 105%/4.35% for LSD, 98.7%/5.75% and 99.4%/7.21% for iso-LSD, 106%/4.54% and 99.4%/7.21% for O-H-LSD, and 107%/5.82% and 102%/5.88% for nor-LSD, respectively. The limit of quantification was 0.05 ng/mL for LSD, iso-LSD, and nor-LSD and 0.1 ng/mL for O-H-LSD. The limit of detection was 0.01 ng/mL for all compounds.
CONCLUSION:
The method described herein was accurate, precise, and the calibration range within the range of expected plasma concentrations. LSD was quantified in the plasma samples of the 24 subjects of the clinical trial, whereas iso-LSD, O-H-LSD, nor-LSD, LAE, LEO, 13/14-hydroxy-LSD, and 2-oxo-LSD could only sporadically be detected but were too low for quantification.
Dolder, P. C., Liechti, M. E., & Rentsch, K. M. (2017). Development and validation of an LC‐MS/MS method to quantify lysergic acid diethylamide (LSD), iso‐LSD, 2‐oxo‐3‐hydroxy‐LSD, and nor‐LSD and identify novel metabolites in plasma samples in a controlled clinical trial. Journal of Clinical Laboratory Analysis. 10.1002/jcla.22265
Link to full text

Development and validation of an LC-MS/MS method to quantify lysergic acid diethylamide (LSD), iso-LSD, 2-oxo-3-hydroxy-LSD, and nor-LSD and identify novel metabolites in plasma samples in a controlled clinical trial Read More »

Pharmacokinetics and Pharmacodynamics of Lysergic Acid Diethylamide in Healthy Subjects

Abstract

Background and Objective: Lysergic acid diethylamide (LSD) is used recreationally and in clinical research. The aim of the present study was to characterize the pharmacokinetics and exposure–response relationship of oral LSD.

Methods: We analyzed pharmacokinetic data from two published placebo-controlled, double-blind, cross-over studies using oral administration of LSD 100 and 200 µg in 24 and 16 subjects, respectively. The pharmacokinetics of the 100-µg dose is shown for the first time and data for the 200-µg dose were reanalyzed and included. Plasma concentrations of LSD, subjective effects, and vital signs were repeatedly assessed. Pharmacokinetic parameters were determined using compartmental modeling. Concentration-effect relationships were described using pharmacokinetic-pharmacodynamic modeling.

Results: Geometric mean (95% confidence interval) maximum plasma concentration values of 1.3 (1.2–1.9) and 3.1 (2.6–4.0) ng/mL were reached 1.4 and 1.5 h after administration of 100 and 200 µg LSD, respectively. The plasma half-life was 2.6 h (2.2–3.4 h). The subjective effects lasted (mean ± standard deviation) 8.2 ± 2.1 and 11.6 ± 1.7 h for the 100- and 200-µg LSD doses, respectively. Subjective peak effects were reached 2.8 and 2.5 h after administration of LSD 100 and 200 µg, respectively. A close relationship was observed between the LSD concentration and subjective response within subjects, with moderate counterclockwise hysteresis. Half-maximal effective concentration values were in the range of 1 ng/mL. No correlations were found between plasma LSD concentrations and the effects of LSD across subjects at or near maximum plasma concentration and within dose groups.

Conclusions: The present pharmacokinetic data are important for the evaluation of clinical study findings (e.g., functional magnetic resonance imaging studies) and the interpretation of LSD intoxication. Oral LSD presented dose-proportional pharmacokinetics and first-order elimination up to 12 h. The effects of LSD were related to changes in plasma concentrations over time, with no evidence of acute tolerance.

Dolder, P. C., Schmid, Y., Steuer, A. E., Kraemer, T., Rentsch, K. M., Hammann, F., & Liechti, M. E. (2017). Pharmacokinetics and Pharmacodynamics of Lysergic Acid Diethylamide in Healthy Subjects. Clinical Pharmacokinetics, 1-12. 10.1007/s40262-017-0513-9

Link to full text

Pharmacokinetics and Pharmacodynamics of Lysergic Acid Diethylamide in Healthy Subjects Read More »

Acute Effects of Lysergic Acid Diethylamide on Circulating Steroid Levels in Healthy Subjects

Abstract

Lysergic acid diethylamide (LSD) is a serotonin 5-hydroxytryptamine-2A (5-HT2A ) receptor agonist that is used recreationally worldwide. Interest in LSD research in humans waned after the 1970s, although the use of LSD in psychiatric research and practice has recently gained increasing attention. LSD produces pronounced acute psychedelic effects, although its influence on plasma steroid levels over time has not yet been characterised in humans. The effects of LSD (200 μg) or placebo on plasma steroid levels were investigated in 16 healthy subjects using a randomised, double-blind, placebo-controlled, cross-over study design. Plasma concentration-time profiles were determined for 15 steroids using liquid-chromatography tandem mass-spectrometry. LSD increased plasma concentrations of the glucocorticoids cortisol, cortisone, corticosterone and 11-dehydrocorticosterone compared to placebo. The mean maximum concentration of LSD was reached at 1.7 h. Mean peak psychedelic effects were reached at 2.4 h, with significant alterations in mental state from 0.5 h to > 10 h. Mean maximal concentrations of cortisol and corticosterone were reached at 2.5 h and 1.9 h, and significant elevations were observed 1.5-6 h and 1-3 h after drug administration, respectively. LSD also significantly increased plasma concentrations of the androgen dehydroepiandrosterone but not other androgens, progestogens or mineralocorticoids compared to placebo. A close relationship was found between plasma LSD concentrations and changes in plasma cortisol and corticosterone and the psychotropic response to LSD, and no clockwise hysteresis was observed. In conclusion, LSD produces significant acute effects on circulating steroids, especially glucocorticoids. LSD-induced changes in circulating glucocorticoids were associated with plasma LSD concentrations over time and showed no acute pharmacological tolerance.

Strajhar, P., Schmid, Y., Liakoni, E., Dolder, P. C., Rentsch, K. M., Kratschmar, D. V., … & Liechti, M. E. (2016). Acute Effects of Lysergic Acid Diethylamide on Circulating Steroid Levels in Healthy Subjects. Journal of neuroendocrinology, 28(3). 10.1111/jne.12374
Link to full text

Acute Effects of Lysergic Acid Diethylamide on Circulating Steroid Levels in Healthy Subjects Read More »

Acute effects of LSD on circulating steroid levels in healthy subjects.

Abstract

Lysergic acid diethylamide (LSD) is a serotonin 5-hydroxytryptamine-2A (5-HT2A ) receptor agonist that is used recreationally worldwide. Interest in LSD research in humans waned after the 1970s, but the use of LSD in psychiatric research and practice has recently gained increasing attention. LSD produces pronounced acute psychedelic effects, but its influence on plasma steroid levels over time have not yet been characterized in humans. The effects of LSD (200μg) or placebo on plasma steroid levels were investigated in 16 healthy subjects using a randomized, double-blind, placebo-controlled cross-over study design. Plasma concentration-time profiles were determined for 15 steroids using liquid-chromatography tandem mass-spectrometry. LSD increased plasma concentrations of the glucocorticoids cortisol, cortisone, corticosterone, and 11-dehydrocorticosterone compared with placebo. The mean maximum concentration of LSD was reached at 1.7h. Mean peak psychedelic effects were reached at 2.4h, with significant alterations in mental state from 0.5h to >10h. Mean maximal concentrations of cortisol and corticosterone were reached at 2.5h and 1.9h, and significant elevations were observed 1.5-6h and 1-3h after drug administration, respectively. LSD also significantly increased plasma concentrations of the androgen dehydroepiandrosterone but not other androgens, progestogens, or mineralocorticoids compared with placebo. A close relationship was found between plasma LSD concentrations and changes in plasma cortisol and corticosterone and the psychotropic response to LSD, and no clockwise hysteresis was observed. In conclusion, LSD produces significant acute effects on circulating steroids, especially glucocorticoids. LSD-induced changes in circulating glucocorticoids were associated with plasma LSD concentrations over time and showed no acute pharmacological tolerance.

Strajhar, P., Schmid, Y., Liakoni, E., Dolder, P. C., Rentsch, K. M., Kratschmar, D. V., … & Liechti, M. E. (2016). Acute effects of LSD on circulating steroid levels in healthy subjects. Journal of Neuroendocrinology. http://dx.doi.org/10.1111/jne.12374

Link to full text

Acute effects of LSD on circulating steroid levels in healthy subjects. Read More »

Pharmacokinetics and concentration-effect relationship of oral LSD in humans

Abstract

Background: The pharmacokinetics of oral lysergic acid diethylamide (LSD) are unknown, despite its common recreational use and renewed interest in its use in psychiatric research and practice.

Methods: We characterized the pharmacokinetic profile, pharmacokinetic-pharmacodynamic relationship, and urine recovery of LSD and its main metabolite after administration of a single oral dose of LSD (200 μg) in eight male and eight female healthy subjects.

Results: Plasma LSD concentrations were quantifiable (> 0.1 ng/ml) in all of the subjects up to 12 h after administration. Maximal concentrations of LSD (mean ± SD: 4.5 ± 1.4 ng/ml) were reached (median, range) 1.57 (0.5-4) h after administration. Concentrations then decreased following first-order kinetics with a half-life of 3.6 ± 0.9 h up to 12 h and slower elimination thereafter with a terminal half-life of 8.9 ± 5.9 h. One percent of the orally administered LSD was eliminated in urine as LSD, and 14% was eliminated as 2-oxo-3-hydroxy-LSD within 24 h. No sex differences were observed in the pharmacokinetic profiles of LSD. The acute subjective and sympathomimetic responses to LSD lasted up to 12 h and were closely associated with the concentrations in plasma over time and exhibited no acute tolerance.

Conclusions: These first data on the pharmacokinetics and concentration-effect relationship of oral LSD are relevant for further clinical studies and serve as a reference for the assessment of intoxication with LSD.

Dolder, P. C., Schmid, Y., Haschke, M., Rentsch, K. M., & Liechti, M. E. (2015). Pharmacokinetics and concentration-effect relationship of oral LSD in humans. International Journal of Neuropsychopharmacology, pyv072.

Link to full text

Pharmacokinetics and concentration-effect relationship of oral LSD in humans Read More »

Development and validation of a rapid turboflow LC-MS/MS method for the quantification of LSD and 2-oxo-3-hydroxy LSD in serum and urine samples of emergency toxicological cases

Abstract

Lysergic acid diethylamide (LSD) is a widely used recreational drug. The aim of the present study is to develop a quantitative turboflow LC-MS/MS method that can be used for rapid quantification of LSD and its main metabolite 2-oxo-3-hydroxy LSD (O-H-LSD) in serum and urine in emergency toxicological cases without time-consuming extraction steps. The method was developed on an ion-trap LC-MS/MS instrument coupled to a turbulent-flow extraction system. The validation data showed no significant matrix effects and no ion suppression has been observed in serum and urine. Mean intraday accuracy and precision for LSD were 101 and 6.84 %, in urine samples and 97.40 and 5.89 % in serum, respectively. For O-H-LSD, the respective values were 97.50 and 4.99 % in urine and 107 and 4.70 % in serum. Mean interday accuracy and precision for LSD were 100 and 8.26 % in urine and 101 and 6.56 % in serum, respectively. For O-H-LSD, the respective values were 101 and 8.11 % in urine and 99.8 and 8.35 % in serum, respectively. The lower limit of quantification for LSD was determined to be 0.1 ng/ml. LSD concentrations in serum were expected to be up to 8 ng/ml. 2-Oxo-3-hydroxy LSD concentrations in urine up to 250 ng/ml. The new method was accurate and precise in the range of expected serum and urine concentrations in patients with a suspected LSD intoxication. Until now, the method has been applied in five cases with suspected LSD intoxication where the intake of the drug has been verified four times with LSD concentrations in serum in the range of 1.80–14.70 ng/ml and once with a LSD concentration of 1.25 ng/ml in urine. In serum of two patients, the O-H-LSD concentration was determined to be 0.99 and 0.45 ng/ml. In the urine of a third patient, the O-H-LSD concentration was 9.70 ng/ml.

Dolder, P. C., Liechti, M. E., & Rentsch, K. M. (2015). Development and validation of a rapid turboflow LC-MS/MS method for the quantification of LSD and 2-oxo-3-hydroxy LSD in serum and urine samples of emergency toxicological cases. Analytical and bioanalytical chemistry, 407(6), 1577-1584. http://dx.doi.org/10.1007/s00216-014-8388-1

Link to full text

Development and validation of a rapid turboflow LC-MS/MS method for the quantification of LSD and 2-oxo-3-hydroxy LSD in serum and urine samples of emergency toxicological cases Read More »

Should Psychedelic Therapists Have Self-Experience? - Online Panel & Q&A - Jan 21