OPEN Foundation

C. Lenz

Injury-Triggered Blueing Reactions of Psilocybe “Magic” Mushrooms

Abstract

Upon injury, psychotropic psilocybin-producing mushrooms instantly develop an intense blue color, the chemical basis and mode of formation of which has remained elusive. We report two enzymes from Psilocybe cubensis that carry out a two-step cascade to prepare psilocybin for oxidative oligomerization that leads to blue products. The phosphatase PsiP removes the 4-O-phosphate group to yield psilocin, while PsiL oxidizes its 4-hydroxy group. The PsiL reaction was monitored by in situ 13 C NMR spectroscopy, which indicated that oxidative coupling of psilocyl residues occurs primarily via C-5. MS and IR spectroscopy indicated the formation of a heterogeneous mixture of preferentially psilocyl 3- to 13-mers and suggest multiple oligomerization routes, depending on oxidative power and substrate concentration. The results also imply that phosphate ester of psilocybin serves a reversible protective function.

Lenz, C., Wick, J., Braga, D., García-Altares, M., Lackner, G., Hertweck, C., Gressler, M., & Hoffmeister, D. (2020). Injury-Triggered Blueing Reactions of Psilocybe “Magic” Mushrooms. Angewandte Chemie (International ed. in English), 59(4), 1450–1454. https://doi.org/10.1002/anie.201910175

Link to full text

Production Options for Psilocybin: Making of the Magic

Abstract

The fungal genus Psilocybe and other genera comprise numerous mushroom species that biosynthesize psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine). It represents the prodrug to its dephosphorylated psychotropic analogue, psilocin. The colloquial term “magic mushrooms” for these fungi alludes to their hallucinogenic effects and to their use as recreational drugs. However, clinical trials have recognized psilocybin as a valuable candidate to be developed into a medication against depression and anxiety. We here highlight its recently elucidated biosynthesis, the concurrently developed concept of enzymatic in vitro and heterologous in vivo production, along with previous synthetic routes. The prospect of psilocybin as a promising therapeutic may entail an increased demand, which can be met by biotechnological production. Therefore, we also briefly touch on psilocybin’s therapeutic relevance and pharmacology.

Fricke, J., Lenz, C., Wick, J., Blei, F., & Hoffmeister, D. (2018). Production Options for Psilocybin: Making of the Magic. Chemistry–A European Journal., 10.1002/chem.201802758

Link to full text

Acute LSD effects on response inhibition neural networks

Abstract

BACKGROUND:
Recent evidence shows that the serotonin 2A receptor (5-hydroxytryptamine2A receptor, 5-HT2AR) is critically involved in the formation of visual hallucinations and cognitive impairments in lysergic acid diethylamide (LSD)-induced states and neuropsychiatric diseases. However, the interaction between 5-HT2AR activation, cognitive impairments and visual hallucinations is still poorly understood. This study explored the effect of 5-HT2AR activation on response inhibition neural networks in healthy subjects by using LSD and further tested whether brain activation during response inhibition under LSD exposure was related to LSD-induced visual hallucinations.
METHODS:
In a double-blind, randomized, placebo-controlled, cross-over study, LSD (100 µg) and placebo were administered to 18 healthy subjects. Response inhibition was assessed using a functional magnetic resonance imaging Go/No-Go task. LSD-induced visual hallucinations were measured using the 5 Dimensions of Altered States of Consciousness (5D-ASC) questionnaire.
RESULTS:
Relative to placebo, LSD administration impaired inhibitory performance and reduced brain activation in the right middle temporal gyrus, superior/middle/inferior frontal gyrus and anterior cingulate cortex and in the left superior frontal and postcentral gyrus and cerebellum. Parahippocampal activation during response inhibition was differently related to inhibitory performance after placebo and LSD administration. Finally, activation in the left superior frontal gyrus under LSD exposure was negatively related to LSD-induced cognitive impairments and visual imagery.
CONCLUSION:
Our findings show that 5-HT2AR activation by LSD leads to a hippocampal-prefrontal cortex-mediated breakdown of inhibitory processing, which might subsequently promote the formation of LSD-induced visual imageries. These findings help to better understand the neuropsychopharmacological mechanisms of visual hallucinations in LSD-induced states and neuropsychiatric disorders.
Schmidt, A., Müller, F., Lenz, C., Dolder, P. C., Schmid, Y., Zanchi, D., … & Borgwardt, S. (2017). Acute LSD effects on response inhibition neural networks. Psychological Medicine, 1-13. 10.1017/S0033291717002914
Link to full text

Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations

Abstract

OBJECTIVE:
It has been proposed that the thalamocortical system is an important site of action of hallucinogenic drugs and an essential component of the neural correlates of consciousness. Hallucinogenic drugs such as LSD can be used to induce profoundly altered states of consciousness, and it is thus of interest to test the effects of these drugs on this system.
METHOD:
100 μg LSD was administrated orally to 20 healthy participants prior to fMRI assessment. Whole brain thalamic functional connectivity was measured using ROI-to-ROI and ROI-to-voxel approaches. Correlation analyses were used to explore relationships between thalamic connectivity to regions involved in auditory and visual hallucinations and subjective ratings on auditory and visual drug effects.
RESULTS:
LSD caused significant alterations in all dimensions of the 5D-ASC scale and significantly increased thalamic functional connectivity to various cortical regions. Furthermore, LSD-induced functional connectivity measures between the thalamus and the right fusiform gyrus and insula correlated significantly with subjective auditory and visual drug effects.
CONCLUSION:
Hallucinogenic drug effects might be provoked by facilitations of cortical excitability via thalamocortical interactions. Our findings have implications for the understanding of the mechanism of action of hallucinogenic drugs and provide further insight into the role of the 5-HT2A -receptor in altered states of consciousness.
Mueller, F., Lenz, C., Dolder, P., Lang, U., Schmidt, A., Liechti, M., & Borgwardt, S. (2017). Increased thalamic resting‐state connectivity as a core driver of LSD‐induced hallucinations. Acta Psychiatrica Scandinavica. 10.1111/acps.12818
Link to full text

Identification of ω-N-Methyl-4-hydroxytryptamine (Norpsilocin) as a Psilocybe Natural Product

Abstract

We report the identification of ω-N-methyl-4-hydroxytryptamine (norpsilocin, 1) from the carpophores of the hallucinogenic mushroom Psilocybe cubensis. The structure was elucidated by 1D and 2D NMR spectroscopy and high-resolution mass spectrometry. Norpsilocin has not previously been reported as a natural product. It likely represents the actual psychotropic agent liberated from its 4-phosphate ester derivative, the known natural product baeocystin. We further present a simple and artifact-free extraction method that prevents dephosphorylation and therefore helps reflect the naturally occurring metabolic profile of Psilocybe mushrooms in subsequent analyses.
Lenz, C., Wick, J., & Hoffmeister, D. (2017). Identification of ω-N-Methyl-4-hydroxytryptamine (Norpsilocin) as a Psilocybe Natural Product. Journal of Natural Products80(10), 2835-2838. 10.1021/acs.jnatprod.7b00407
Link to full text

Acute effects of LSD on amygdala activity during processing of fearful stimuli in healthy subjects

Abstract

Lysergic acid diethylamide (LSD) induces profound changes in various mental domains, including perception, self-awareness and emotions. We used functional magnetic resonance imaging (fMRI) to investigate the acute effects of LSD on the neural substrate of emotional processing in humans. Using a double-blind, randomised, cross-over study design, placebo or 100μg LSD were orally administered to 20 healthy subjects before the fMRI scan, taking into account the subjective and pharmacological peak effects of LSD. The plasma levels of LSD were determined immediately before and after the scan. The study (including the a priori-defined study end point) was registered at ClinicalTrials.gov before study start (NCT02308969). The administration of LSD reduced reactivity of the left amygdala and the right medial prefrontal cortex relative to placebo during the presentation of fearful faces (P<0.05, family-wise error). Notably, there was a significant negative correlation between LSD-induced amygdala response to fearful stimuli and the LSD-induced subjective drug effects (P<0.05). These data suggest that acute administration of LSD modulates the engagement of brain regions that mediate emotional processing.

Mueller, F., Lenz, C., Dolder, P. C., Harder, S., Schmid, Y., Lang, U. E., … & Borgwardt, S. (2017). Acute effects of LSD on amygdala activity during processing of fearful stimuli in healthy subjects. Translational Psychiatry, 7(4), e1084. 10.1038/tp.2017.54
Link to full text

Neuroimaging in moderate MDMA use: A systematic review

Abstract

MDMA (“ecstasy”) is widely used as a recreational drug, although there has been some debate about its neurotoxic effects in humans. However, most studies have investigated subjects with heavy use patterns, and the effects of transient MDMA use are unclear. In this review, we therefore focus on subjects with moderate use patterns, in order to assess the evidence for harmful effects. We searched for studies applying neuroimaging techniques in man. Studies were included if they provided at least one group with an average of <50 lifetime episodes of ecstasy use or an average lifetime consumption of <100 ecstasy tablets. All studies published before July 2015 were included. Of the 250 studies identified in the database search, 19 were included.

There is no convincing evidence that moderate MDMA use is associated with structural or functional brain alterations in neuroimaging measures. The lack of significant results was associated with high methodological heterogeneity in terms of dosages and co-consumption of other drugs, low quality of studies and small sample sizes.

Mueller, F., Lenz, C., Steiner, M., Dolder, P. C., Walter, M., Lang, U. E., … & Borgwardt, S. (2016). Neuroimaging in moderate MDMA use: A systematic review. Neuroscience & Biobehavioral Reviews, 62, 21-34. http://dx.doi.org/10.1016/j.neubiorev.2015.12.010
Link to full text

27 March - Exclusive Presentation on Analytic Idealism Followed by a Live Q&A!

X