OPEN Foundation

A. Decker

Comparative neuropharmacology of N-(2-methoxybenzyl)-2,5-dimethoxyphenethylamine (NBOMe) hallucinogens and their 2C counterparts in male rats

Abstract

2,5-Dimethoxyphenethylamines (2C compounds) are 5-HT2A/2C receptor agonists that induce hallucinogenic effects. N-methoxybenzylation of 2C compounds markedly increases their affinity for 5-HT2A receptors, and two such analogs, 2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25C-NBOMe) and 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe), have emerged in recreational drug markets. Here, we investigated the neuropharmacology of 25C-NBOMe and 25I-NBOMe in rats, as compared to their 2C analogs and the prototypical 5-HT2A/2C agonist 1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine (DOI). Compounds were tested in vitro using 5-HT2A receptor binding and calcium mobilization assays. For in vivo experiments, 25C-NBOMe (0.01-0.3 mg/kg), 25I-NBOMe (0.01-0.3 mg/kg), 2-(4-chloro-2,5-dimethoxyphenyl)ethanamine (2C-C) (0.1-3.0 mg/kg), 2-(4-iodo-2,5-dimethoxyphenyl)ethanamine (2C-I) (0.1-3.0 mg/kg) and DOI (0.03-1.0 mg/kg) were administered subcutaneously (sc) to male rats, and 5-HT2A-mediated behaviors were assessed. NBOMes displayed higher affinity for 5-HT2A receptors than their 2C counterparts but were substantially weaker in functional assays. 25C-NBOMe and 25I-NBOMe were much more potent at inducing wet dog shakes (WDS) and back muscle contractions (BMC) when compared to 2C-C and 2C-I. Pretreatment with the selective 5-HT2A antagonist (R)-(2,3-dimethoxyphenyl){1-[2-(4-fluorophenyl)ethyl]-4-piperidinyl}methanol (M100907) reversed behaviors produced by all agonists. Interestingly, binding affinities at the 5-HT2A receptor were significantly correlated with potencies to induce BMC but not WDS. Our findings show that NBOMes are highly potent 5-HT2A agonists in rats, similar to effects in mice, and consistent with the reported hallucinogenic effects in human users.
Elmore, J. S., Decker, A. M., Sulima, A., Rice, K. C., Partilla, J. S., Blough, B. E., & Baumann, M. H. (2018). Comparative neuropharmacology of N-(2-methoxybenzyl)-2, 5-dimethoxyphenethylamine (NBOMe) hallucinogens and their 2C counterparts in male rats. Neuropharmacology. 10.1016/j.neuropharm.2018.02.033
Link to full text

Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes

Abstract

Rationale
Synthetic hallucinogenic tryptamines, especially those originally described by Alexander Shulgin, continue to be abused in the USA. The range of subjective experiences produced by different tryptamines suggests that multiple neurochemical mechanisms are involved in their actions, in addition to the established role of agonist activity at serotonin 2A (5-HT2A) receptors.

Objectives
This study evaluated the interaction of a series of synthetic tryptamines with biogenic amine neurotransmitter transporters and with serotonin (5-HT) receptor subtypes implicated in psychedelic effects.

Methods
Neurotransmitter transporter activity was determined in rat brain synaptosomes. Receptor activity was determined using calcium mobilization and DiscoveRx PathHunter® assays in HEK293, Gα16-CHO, and CHOk1 cells transfected with human receptors.

Results
Twenty-one tryptamines were analyzed in transporter uptake and release assays, and 5-HT2A, serotonin 1A (5-HT1A), and 5-HT2A β-arrestin functional assays. Eight of the compounds were found to have 5-HT-releasing activity. Thirteen compounds were found to be 5-HT uptake inhibitors or were inactive. All tryptamines were 5-HT2A agonists with a range of potencies and efficacies, but only a few compounds were 5-HT1A agonists. Most tryptamines recruited β-arrestin through 5-HT2A activation.

Conclusions
All psychoactive tryptamines are 5-HT2A agonists, but 5-HT transporter (SERT) activity may contribute significantly to the pharmacology of certain compounds. The in vitro transporter data confirm structure-activity trends for releasers and uptake inhibitors whereby releasers tend to be structurally smaller compounds. Interestingly, two tertiary amines were found to be selective substrates at SERT, which dispels the notion that 5-HT-releasing activity is limited only to primary or secondary amines.

Blough, B. E., Landavazo, A., Decker, A. M., Partilla, J. S., Baumann, M. H., & Rothman, R. B. (2014). Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology, 231(21), 4135-4144. http://dx.doi.org/10.1007/s00213-014-3557-7
Link to full text

30 April - Q&A with Rick Strassman

X