OPEN Foundation

Gwendolyn Drossaert

Psychedelic Assisted Therapy for Treating Addiction – Part 2

Psychedelic Assisted Therapy for Treating Addiction – Part 2

Introduction

In recent years, there has been an increasing interest in the potential of psychedelic therapy as a novel approach for the treatment of addiction. This interest stems from a growing body of research exploring the therapeutic effects of psychedelic substances on addictive behaviors, particularly psilocybin and LSD. In his past seminar titled “Euphoria: The New Science of Addiction and Psychedelic Therapy,” Dr. Rayyan Zafar, a prominent researcher in the field, delves into the key insights and findings spanning from observational studies, clinical trials, and historical investigations with psychedelics in addiction treatment. Dr. Zafar sheds light on the historical context, scientific progress, and prospects of psychedelic therapy in addiction treatment. This blog post aims to summarize and analyze the key takeaways from Dr. Zafar’s seminar, providing readers with a deeper understanding of the evolving landscape of addiction treatment and the role of psychedelic therapy within it.

Key Takeaways from “Euphoria: The New Science of Addiction and Psychedelic Therapy”

 

Comprehensive Review of Psychedelic Therapy in Addiction Treatment


Dr. Zafar’s past seminar offered an in-depth examination of the potential of psychedelic therapy in treating addiction, drawing on a diverse range of research sources. The exploration begins with historical studies dating back to the mid to late 1900s, shedding light on the origins of psychedelic research and its developmental trajectory. Both classic (e.g. psilocybin, LSD, and DMT) and non-classical psychedelics (e.g. 6-MeO-DMT, ketamine, and MDMA) were discussed but due to the limited scope of this article, only the classic ones, psilocybin and LSD, will be highlighted. 

The first realization of the powerful effect of LSD on mood and cognition in 1943 presumably marked the beginning of a modern era in which psychedelic drugs could be used to treat certain mental and behavioral conditions. From the 1940s and early 1970s, classic psychedelics were actively researched in humans as both a pharmacological tool to understand its effects on the mind and brain and as a therapeutics. Collectively, LSD was seen as a promising treatment for numerous serious mental health disorders such as depression, alcoholism, and other substance use disorders (Hofman, 1980). Furthermore, it has a favorable safety profile and had profound short-term psychological effects (Krebs). This led to a potential breakthrough in the treatment of various mental illnesses, including different forms of drug addiction (Belouin). 

Between the late 1950s and early 1970s, approximately 40,000 patients worldwide suffering from various mental disorders, including substance use disorders, received treatment with psychedelics such as LSD, mescaline, and psilocybin, are documented over 1000 publications (Grinspoon). A key finding was that psychedelics are well-tolerated and induce a low risk of adverse side events (online event).

A controlled study investigating LSD’s efficacy in adjunction to psychotherapy in treating heroin addiction was influential. It was revealed that 33% of 36 participants in the treatment group (n= 73) maintained a abstinence after one year compared to the control group with a mere 5% success rate. However, only 5% maintain complete abstinence after the fulfilling the treatment program (Savage, 1973). Furthermore, a meta-analysis collected data about LSD in alcoholism from six randomized controlled trials that were published in the 1960s with over 500 participants and showed that LSD doubled the odds that patients would be abstinent at first follow-up, as defined by (OR = 2.07). Yet, this was not seen after a year (Krebs). 

Even though there is quite a large amount of historical data showing a positive trend toward the therapeutic role of psychedelics in addiction treatment, the evidence from these studies remains inconclusive due to methodological inconsistencies. More specifically, these inconsistencies encompassed deficiencies in study design, such as the lack of proper controls, blinding, follow-up protocols, statistical analyses, and the utilization of validated assessments, as evaluated through contemporary research standards (Rucker). 

Groundbreaking Investigations into Addiction Treatment with Psychedelic-assisted Therapy

The widespread use of psychedelics in the 1960s fueled a counterculture movement, prompting a political backlash and leading to increased regulatory controls by the FDA. This culminated in the establishment of the Controlled Substances Act (CSA) in 1970 under Richard Nixon, effectively halting psychedelic research (Belouin). However, efforts to explore the therapeutic potential of psychedelics resumed in the 1990s with renewed scientific interest and advanced research methodologies (Belouin; Zafar).

Dr. Zafar provided an overview of the latest findings from these investigations, illuminating the favorable prospects of psychedelics in addiction recovery. Ongoing clinical trials exploring the potential therapeutic role of psychedelics in addiction cover a diverse spectrum of substances and addiction types, ranging from alcohol and tobacco to methamphetamine and gambling addiction. Due to the limited scope of this article, only psilocybin in alcohol and tobacco will be highlighted. These trials aim to expand upon initial findings and set the stage for larger-scale studies that would ultimately secure regulatory approval. 

The promising results of earlier research on psychedelics and alcohol addiction have prompted a modern replication open-label study examining psilocybin-assisted treatment for alcohol dependence (Bogenschutz et el., 2015). In the little sneak preview of last week, the study of psilocybin in conjunction with Motivational Enhancement Therapy (MET) was discussed. The figure illustrates the change in percent drinking days and percent heavy drinking days. The blue line in the graph represent the % of drinking days while the red line represent the % heavy drinking days. After the first administration with psilocybin, both percent drinking and heavy drinking days were statistically significant lower than baseline in all the follow-up points. 

To explore the relationship between the intensity of the psilocybin-induced experience with changes in drinking behavior, the acute effects of psilocybin were measured by the Mystical Experiences Questionnaire (MEQ). It was also found to correlate with changes in drinking behavior, craving, and self-efficacy (Bogenschutz, 2015). 

The mystical experiences induced by psilocybin are characterized by immediate sensations of unity, sacredness, a sense of understanding beyond ordinary knowledge, positive mood, transcendence of notions of space and time, and an inability to adequately describe the experience (e.g., ineffability; Griffiths, 2006). These dimensions seem to be common across ages, cultures, ethnicities, and genders (online seminar Johnson). The hallmark of the mystical experience lies in the profound sense of being influenced by forces greater than oneself, often accompanied by intense emotions, sparking enduring and transformative changes in one’s life (Miller). 

To build upon the findings of the study of Bogenschutz et al. (2015), the research group investigated psilocybin in a so-called phase 2 double-blind randomized clinical trial (Bogenschutz, 2022). On one hand, it was observed that the psilocybin group had lower percentage  in heavy drinking days and mean daily alcohol consumption (number of standard drinks per day) compared to the group that was given diphenhydramine as a control. On the other hand, the percentage of drinking days was not statistically reduced (29 in psilocybin group vs 43 in control groups). However, important limitations need to be pointed out. There were some methodological issues that could lead to a higher risk of making incorrect inferences about the data.This study is currently undergoing replication in larger phase III trials across multiple centers, advancing toward creating more data regarding the efficacy of the psychedelic drug and potential marketing authorization for this indication (Zafar).

The effects of psilocybin have also been investigated in conjunction with CBT for the treatment of tobacco addiction. In this open-label study, individuals were given two to three moderate to high doses (20 and 30 mg/70kg) of psilocybin (Johnson, 2017). Results based on urinary and breath analyses showed that 60% of the group did not smoke after one year of follow-up. This is a seemingly big difference compared to the 35% of what is usually observed in traditional tobacco treatment paradigms (Cahill, 2014). In the acknowledgment of the lack of drawing definitive conclusions based on open-label studies and the lack of a control group, a randomized comparative efficacy study has been performed and the results remain yet to be published. 

Future Applications with Neuroimaging Techniques

Various neuroimaging techniques are able to provide insights into the neurobiological mechanisms of psychedelic therapy and how these relate to clinical outcomes in the treatment of addiction. These techniques include functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT) scans and enable researchers to map changes in both brain activity and connectivity, offering a deeper understanding of addiction mechanisms and treatment outcomes. Despite the relative scarcity of literature on the neurobiological mechanisms of psychedelics in addiction, recent studies have shed light on potential pathways such as reward, inhibitory control, and stress (Hayes).

Neuroimaging studies are invaluable in identifying biomarkers associated with substance dependence. These biomarkers serve as an objective measurement of bodily activity and, thus, aim to elucidate the mechanisms and conditions under which treatments prove effective. For instance, PET and SPECT, have enabled researchers to delve into the molecular dynamics of addiction within the living human brain. These methods have unveiled specific neuroreceptor biomarkers associated with different subclasses of addiction. Take, for example, the findings regarding dopamine receptors in alcohol and stimulant use disorder (Nutt et al., 2015), opioid receptors in cocaine (Gorelick et al., 2005), and opioid dependence (Williams et al., 2007). Such insights have not only paved the way for a deeper understanding of addiction pathology but also presented novel targets for therapeutic intervention. 

Furthermore, by utilizing radioligands, neurotransmitter release studies have offered valuable insights into the dynamics of neurotransmission in addiction. The dopamine system has been widely implicated in addiction theory (Nutt, 2015; Zafar). In addiction, specifically, a blunted dopamine release in a brain region called the nucleus accumbens has been observed after a drug was given. When investigating the effect of psychedelics on addiction, it has been suggested that there is a potential link between psychedelics and dopamine release (Martin et al., 2024; Vollenweider et al. 1999). Yet, so far neurochemical studies have been done in non-humans and futher research is warranted (Nutt, 2015).

Dr. Zafar discusses that advanced multimodal neuroimaging techniques are necessary to directly assess the effects of psychedelic therapy on neurotransmission and brain function in individuals with addiction. For example, multimodal imaging studies combining PET and fMRI have proposed that psychedelic therapy may lead to increases in endogenous dopamine levels in addiction disorders, potentially reflecting improved brain function and treatment outcomes. One of his future scientific endeavors will investigate using fMRI and EEG to investigate differences between pre-and post-administration with psilocybin. Ultimately, these advances ultimately pave the way for more personalized and efficient approaches to address substance dependence (Moeller).

Addressing Challenges and Knowledge Gaps

While the collective data on psychedelics and addiction suggests a positive trend toward reducing substance use, and cravings, and fostering abstinence compared to conventional treatments, several critical knowledge gaps and controversies persist, necessitating further exploration and clarification. Besides the limitations associated with naturalistic, observational, open-label, and animal studies, we will highlight some knowledge gaps that are critical to address when exploring psychedelics and addiction. Indeed, when one door closes, another hundred seem to open.

One of the main remaining questions is: “What mediates the long-term effects of psychedelics?”

The enduring psychological and behavioral changes observed after psychedelic use may be partly influenced by the immediate, often subjectively positive effects of 5-HT2A receptor agonists, which are occasionally described as mystical or transcendent (Bogenschutz 2015; Calder; Griffiths 2006, 2008, 2011; Johnson 2017; Rothberg; Tap; Yaden). Griffiths (2011) even found that psilocybin can affect the Big Five personality traits, typically considered stable, by increasing openness. Similar associations between greater mystical experiences and improved outcomes were observed in psychedelic-assisted therapy (PAT) for smoking cessation (Johnson, 2017). The findings suggest that psilocybin-assisted treatment has lasting impacts beyond the drug’s immediate effects, with participants ranking their psilocybin experiences as some of the most personally significant and spiritually impactful, correlating with higher smoking cessation rates (Johnson 2017).

While these studies did not explicitly focus on spirituality, the findings raise questions about its role in the effects of psychedelic drugs on addiction. The emotion of awe is suggested as a crucial mechanism driving mystical experiences during psychedelic-assisted psychotherapy (Kan). Awe fosters feelings of interconnectedness and unity, which are central to the transformative effects of psychedelic therapy (Griffiths, 2008). Data indicates that more profound mystical experiences increase the likelihood of smoking cessation (Johnson, 2017). However, not all mystical experiences lead to lasting change, and individuals may return to their previous state. Future randomized, placebo-controlled clinical trials with multiple follow-up assessments are necessary to establish causality and determine the clinical significance of these mechanisms.

Another remaining question concerns the use of a particular therapeutic framework when psychedelics are administered to individuals with addiction. The literature is clear that psychotherapy plays a crucial role in addiction treatment, but it remains unknown what the right amount and particular type of psychotherapeutic intervention and relapse prevention is best. Some studies indicate that group therapy alongside psychedelic use may enhance group connectedness and interpersonal understanding, potentially promoting prosocial behavior (Ponomarenko). While mystical experiences often foster profound connections with others and the universe, solo settings remain prevalent, though both solo and group therapies have shown no significant differences in mental health perceptions (Byrne).

Another remaining question is “How do psychedelics impact the neural circuits implicated in addiction?” Answers to these questions can give insights into how to optimize the development of psychedelic-assisted therapies. Psychedelics may disrupt networks associated with addiction and enhance connectivity across the brain, fostering neuroplasticity and facilitating the relearning of behaviors (Carhart-Harris; Calder; Nutt 2023; online event; Tap). However, understanding these neuroplasticity mechanisms remains limited, with studies primarily conducted on animal models and cell lines (Calder)

Become a member if you would like to know the details of the past online seminar about psychedelics and addiction!

Conclusion 

In conclusion, the field of addiction treatment is undergoing a profound transformation with the exploration of psychedelic therapy. Early research indicates that psychedelics like psilocybin and LSD show a positive trend in reducing addictive behaviors, supported by both historical and somewhat by modern clinical trials. By leveraging cutting-edge techniques, neuroimaging studies, researchers can elucidate the underlying mechanisms of psychedelic interventions and tailor treatments to individual needs. Despite the promising data, methodological inconsistencies and knowledge gaps remain, necessitating further rigorous research. Looking ahead, the future of psychedelics and addiction holds some promise, fueled by groundbreaking research, innovative treatment modalities, and a growing understanding of the complex interplay between neuroscience, psychology, and pharmacology. 

By Gwendolyn Drossaert


Become a member to get access to recordings of past and upcoming live online events with leading experts in psychedelic research and therapy.

References

  1. Belouin, S. J., & Henningfield, J. E. (2018). Psychedelics: Where we are now, why we got here, what we must do. Neuropharmacology, 142, 7-19.
  2. Bogenschutz, M. P., Forcehimes, A. A., Pommy, J. A., Wilcox, C. E., Barbosa, P. C., & Strassman, R. J. (2015). Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. Journal of psychopharmacology, 29(3), 289-299.
  3. Bogenschutz, M. P., Ross, S., Bhatt, S., Baron, T., Forcehimes, A. A., Laska, E., … & Worth, L. (2022). Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder: a randomized clinical trial. JAMA psychiatry, 79(10), 953-962.
  4. Byrne, K. J., Lindsay, S., Baker, N., Schmutz, C., & Lewis, B. (2023). In naturalistic psychedelic use, group use is common and acceptable. Journal of Psychedelic Studies, 7(2), 100-113.
  5. Carhart-Harris, R. L., & Nutt, D. J. (2017). Serotonin and brain function: a tale of two receptors. Journal of psychopharmacology, 31(9), 1091-1120.
  6. Cahill, K., Stevens, S., & Lancaster, T. (2014). Pharmacological treatments for smoking cessation. Jama, 311(2), 193-194.
  7. Calder, A. E., & Hasler, G. (2023). Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology, 48(1), 104-112.
  8. Cameron, L. P., Tombari, R. J., Lu, J., Pell, A. J., Hurley, Z. Q., Ehinger, Y., … & Olson, D. E. (2021). A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature, 589(7842), 474-479.
  9. Griffiths, R. R., Johnson, M. W., Richards, W. A., Richards, B. D., McCann, U., & Jesse, R. (2011). Psilocybin occasioned mystical-type experiences: immediate and persisting dose-related effects. Psychopharmacology, 218, 649-665.
  10. Griffiths, R. R., Richards, W. A., Johnson, M. W., McCann, U. D., & Jesse, R. (2008). Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. Journal of psychopharmacology, 22(6), 621-632.
  11. Griffiths, R. R., Richards, W. A., McCann, U., & Jesse, R. (2006). Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology, 187, 268-283.
  12. Grinspoon, L., & Bakalar, J. B. (1979). Psychedelic drugs reconsidered (Vol. 168, pp. 163-166). New York: Basic Books.
  13. Hayes, A., Herlinger, K., Paterson, L., & Lingford-Hughes, A. (2020). The neurobiology of substance use and addiction: evidence from neuroimaging and relevance to treatment. BJPsych Advances, 26(6), 367-378.
  14. Johnson, M. W., Garcia-Romeu, A., & Griffiths, R. R. (2017). Long-term follow-up of psilocybin-facilitated smoking cessation. The American journal of drug and alcohol abuse, 43(1), 55-60.
  15. Gorelick, D. A., Kim, Y. K., Bencherif, B., Boyd, S. J., Nelson, R., Copersino, M., … & Frost, J. J. (2005). Imaging brain mu-opioid receptors in abstinent cocaine users: time course and relation to cocaine craving. Biological psychiatry, 57(12), 1573-1582.
  16. Krebs, T. S., & Johansen, P. Ø. (2012). Lysergic acid diethylamide (LSD) for alcoholism: meta-analysis of randomized controlled trials. Journal of Psychopharmacology, 26(7), 994-1002.
  17. Lingford-Hughes, A., Reid, A. G., Myers, J., Feeney, A., Hammers, A., Taylor, L. G., … & Nutt, D. J. (2012). A [11C] Ro15 4513 PET study suggests that alcohol dependence in man is associated with reduced α5 benzodiazepine receptors in limbic regions. Journal of Psychopharmacology, 26(2), 273-281.
  18. Martin, D. A., Delgado, A., & Calu, D. J. (2024). The psychedelic, DOI, increases dopamine release in nucleus accumbens to predictable rewards and reward cues. bioRxiv, 2024-03.
  19. Miller, W. R., & C’de Baca, J. (2001). Quantum change: When epiphanies and sudden insights transform ordinary lives. Guilford Press.
  20. Moeller, S. J., & Paulus, M. P. (2018). Toward biomarkers of the addicted human brain: Using neuroimaging to predict relapse and sustained abstinence in substance use disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 80, 143-154.
  21. Nutt, D. J., Lingford-Hughes, A., Erritzoe, D., & Stokes, P. R. (2015). The dopamine theory of addiction: 40 years of highs and lows. Nature Reviews Neuroscience, 16(5), 305-312.
  22. Nutt, D., Spriggs, M., & Erritzoe, D. (2023). Psychedelics therapeutics: what we know, what we think, and what we need to research. Neuropharmacology, 223, 109257.
  23. Ponomarenko, P., Seragnoli, F., Calder, A., Oehen, P., & Hasler, G. (2023). Can psychedelics enhance group psychotherapy? A discussion on the therapeutic factors. Journal of psychopharmacology, 37(7), 660-678.
  24. Rothberg, R. L., Azhari, N., Haug, N. A., & Dakwar, E. (2021). Mystical-type experiences occasioned by ketamine mediate its impact on at-risk drinking: Results from a randomized, controlled trial. Journal of Psychopharmacology, 35(2), 150-158.
  25. Rucker, J. J., Iliff, J., & Nutt, D. J. (2018). Psychiatry & the psychedelic drugs. Past, present & future. Neuropharmacology, 142, 200-218.
  26. Savage, C., & McCabe, O. L. (1973). Residential psychedelic (LSD) therapy for the narcotic addict: a controlled study. Archives of general psychiatry, 28(6), 808-814.
  27. Stokes, P. R., Benecke, A., Myers, J., Erritzoe, D., Watson, B. J., Kalk, N., … & Lingford-Hughes, A. R. (2013). History of cigarette smoking is associated with higher limbic GABAA receptor availability. Neuroimage, 69, 70-77.
  28. Vollenweider, F. X., Vontobel, P., Hell, D., & Leenders, K. L. (1999). 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man—a PET study with [11C] raclopride. Neuropsychopharmacology, 20(5), 424-433.
  29. Yaden, D. B., Berghella, A. P., Regier, P. S., Garcia-Romeu, A., Johnson, M. W., & Hendricks, P. S. (2021). Classic psychedelics in the treatment of substance use disorder: potential synergies with twelve-step programs. International Journal of Drug Policy, 98, 103380.
  30. Williams, T. M., Daglish, M. R., Lingford-Hughes, A., Taylor, L. G., Hammers, A., Brooks, D. J., … & Nutt, D. J. (2007). Brain opioid receptor binding in early abstinence from opioid dependence: positron emission tomography study. The British Journal of Psychiatry, 191(1), 63-69.
  31. Online event
  32. Tap, S. C. (2024). The potential of 5‐methoxy‐N, N‐dimethyltryptamine in the treatment of alcohol use disorder: A first look at therapeutic mechanisms of action. Addiction Biology, 29(4), e13386.
  33. Zafar, R., Siegel, M., Harding, R., Barba, T., Agnorelli, C., Suseelan, S., … & Erritzoe, D. (2023). Psychedelic therapy in the treatment of addiction: the past, present and future. Frontiers in Psychiatry, 14, 1183740.

Psychedelic Assisted Therapy for treating Addiction – Part 1

Psychedelic Assisted Therapy for treating Addiction – Part 1

In recent years, there has been an increase in interest in the use of psychedelic-assisted therapy (PAT) to help individuals suffering from their addiction. Despite the promising findings from recent clinical trials, many questions remain. How exactly does PAT  work to treat addiction? Which different psychedelics are used? What are their potential risks and benefits? 

Introduction

Addiction, in its myriad forms, continues to pose a significant challenge to global public health. Recent studies suggest that up to 6% of individuals contend with substance-related issues, with prevalence rates showing an upward trend (Ritchie). Addiction’s cyclical nature, propelled by shifts in brain chemistry, reinforces compulsive behaviors despite adverse outcomes, contributing to a concerning rise in substance-related fatalities. Legal substances like alcohol and tobacco, as per the World Drug Report (2022), account for the primary contributors to morbidity and mortality associated with substance use, while illegal drugs such as psychedelics, amphetamines, and opiates collectively contribute to 5% of the global addiction burden. In the Netherlands, two million individuals are affected by addiction, and in roughly 1,6 million of the cases it involves legal substances such as tobacco and alcohol (LADIS Tussenrapportage Kerncijfers Verslavingszorg, 2016-2021). 

The grip of addiction does not only devastate the lives of those afflicted, but it also has a significant impact on families, communities, and society at large. Despite decades of research and numerous interventions, addiction remains a formidable challenge for healthcare professionals worldwide. Indeed, traditional treatment approaches, such as pharmacotherapy and psychotherapy, have demonstrated limited efficacy (Kan; Hayes; Zafar). Research has shown that most individuals often end up relapsing within six months (Hayes), highlighting the need for more innovative solutions. It is within this landscape of unmet medical needs that alternative therapies, such as psychedelic-assisted therapy (PAT), are gaining more and more traction in recent years. It can be considered a novel therapeutic paradigm as it harnesses the psychoactive properties of certain psychedelic drugs to help facilitate the psychotherapeutic process. Unlike conventional addiction treatments that focus solely on symptom management, therapy assisted with psychedelics aims to address the root causes of addiction by inducing transformative experiences that promote introspection, emotional processing, and behavior change, ultimately hoping for long-term recovery. 

Defining Addiction

Definition and types of addiction

Addiction is formally defined as the continued use of a harmful substance despite adverse consequences. Core features of addiction include the compulsive pursuit of pleasurable stimuli, fixation on substances or behaviors, and continued engagement despite adverse consequences (Koob, all). Decades of research demonstrate that addiction manifests as a deeply entrenched behavioral pattern influenced by alterations in brain function, environmental factors, and psychological dynamics (Koob, all; Heilig). Repeated substance use induces changes in brain functioning, framing addiction as a neuropsychological disorder. 

It’s important to differentiate between two distinct aspects of addiction: controlled substance use and the inability to resist the substance or behavior. These represent separate dimensions that collectively encompass the spectrum of addiction, including drug use, dependence, and abuse. 

Controlled substance use refers to instances where an individual may regularly consume a substance, but can manage and regulate their usage without experiencing significant negative consequences. This type of use may not necessarily indicate addiction. On the other hand, the inability to resist substance use or behavior signifies a loss of control, where individuals continue to engage in the behavior despite adverse outcomes. This aspect is characteristic of addiction and encompasses both dependence, where the body becomes reliant on the substance, and abuse, which involves harmful patterns of use. By recognizing these distinctions, we gain a clearer understanding of the multifaceted nature of addiction and can tailor interventions and support accordingly.

In the realm of psychiatry research, addiction is typically classified according to either the DSM-5 or the ICD-11 systems. While DSM-5 is prevalent in research contexts, ICD-11 finds broader application in clinical settings. The DSM-5 conceptualizes addiction along a continuum, whereas the ICD-11 delineates between ‘harmful use’ and ‘dependence.’ Consequently, DSM-5 lacks the detail to distinguish between mild and severe dependence. This variance can significantly impact the interpretation and comparison of addiction studies (Hayes). It’s imperative to note that dependence does not inherently equate to addiction, as dependence primarily relates to tolerance and withdrawal, while addiction encompasses complex behaviors involving drug-seeking and craving (Hayes).

Understanding Addiction

The field of cognitive neuroscience has recently focused on understanding addiction by looking at its genetic, cellular, and molecular mechanisms. Addiction can be defined by an individual’s biology, which helps explain why someone might initially smoke in social settings but eventually become unable to resist despite the high risk of lung cancer. Addiction makes self-regulation difficult, according to Heilig and Koob (2010). Simply put, addiction makes a person have difficulties with self-regulation (Heilig; Koob 2010). 

Chronic substance use or harmful behavior significantly impacts neural networks involved in reward processing, inhibitory control, stress response, emotional regulation, and learning/memory, among others, as identified by Koob (2010). One of the most notable findings is that the persistent use of drugs can significantly alter the brain’s structure and function. For example, increases or decreases in the reward system (e.g. ventral striatum) perpetuate cravings, while increases or decreases in the prefrontal region impair self-regulation (Heilig and Koob, 2010).

The disruption of these neural networks has led to several theoretical frameworks that aim to explain how addiction develops over time. Three of the most prominent frameworks include the allostatic hypothesis (Koob, 2005, 2008, 2010), the habit formation theory (Everitt, 2015, 2016), and impaired response inhibition and salience attribution (Goldstein). Despite differing perspectives, all models converge on deficits in reward processing and the hijacking of reward pathways by addictive substances. This leads to prioritizing drug acquisition over non-drug-related pursuits, where the craving for drugs supersedes other goals that are potentially more adaptive for the afflicted individual.

Koob et al.’s (2010) allostatic hypothesis explores addiction through a psychiatric-motivational lens. It suggests that addiction is mediated by cycles of impulsivity and compulsivity delineated in three stages: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation (craving), depicting dysregulation across three key functional areas (incentive salience/habits, negative emotional states, and executive function, respectively). This process is influenced by three primary neurocircuitry components (basal ganglia, extended amygdala, and prefrontal cortex, respectively).

The hypothesis describes that it starts with excessive drug consumption during the binge/intoxication phase wherein the three stages interact, gradually becoming more intense. Eventually, it leads to a pathological condition that is recognized as addiction. Abstinence of drug intake triggers acute and prolonged withdrawal symptoms during the withdrawal/negative stage, eliciting a secondary motivational urge through negative reinforcement. Negative reinforcement refers to the strengthening of certain behaviors by removing or avoiding negative stimuli or output. Prolonged periods without substance use involve persisting negative emotions and triggered cravings from cues and surroundings, establishing the basis for the preoccupation/anticipation phase (Koob, 2010). The progression from impulsivity to compulsivity underscores addiction’s complex interplay of psychological and neurological factors, marking a shift from reward-seeking to emotion-alleviating and habitual responses.

Current Treatment Approaches and Limitations

Conventional treatment methods typically involving behavioral therapies and medications, have shown only moderate success rates. Studies suggest that a significant number of individuals, particularly those dealing with substance abuse and gambling disorders, tend to relapse within a year of starting treatment (Hayes).

Although pharmaceutical drugs like methadone and naltrexone have been developed to address addiction by reducing withdrawal symptoms and cravings, these interventions may not fully address the underlying causes of addiction, nor do they offer long-lasting solutions for everyone (Peters). For instance, naltrexone, an opioid antagonist, was tested in a double-blind clinical trial on individuals with alcohol dependence and was found to moderately reduce relapse rates. While it does decrease cravings, it does not increase abstinence (Chick). Similar results were observed in opioid dependence, where naltrexone alone did not lead to a decrease in relapses (Gerra).

The chronic relapsing nature of addiction is a significant challenge for clinicians, with limited options available to maintain abstinence. Even for those who have successfully achieved abstinence, the risk of relapse is always apparent, or it seems to never go away. Koob suggests that chronic use eventually leads to increased sensitivity that triggers emotional processes in such a way that encourages drug-seeking behavior. Stress plays a significant role in this relationship and is considered one of the most challenging aspects to address in addiction treatment. Animal studies suggest the role of dopamine and glutamate neurotransmitters in addiction, but craving is difficult to quantify in clinical settings and has not been shown to correlate with relapses (Koob 2008). Nonetheless, further research is required to expand on the knowledge regarding the biological changes in these stages. Understanding the neurocircuitry involved in the progressive stages of addiction lays the groundwork for exploring molecular, genetic, and neuropharmacological adaptations crucial in vulnerability to both the onset and perpetuation of addiction (Koob 2010).

Exploring Psychedelics and Addiction

There has been a growing interest in using psychedelic-assisted therapy to treat individuals suffering from addiction. Classic psychedelics such as LSD, DMT, and psilocybin have been combined with psychological therapy such as cognitive behavioral therapy (CBT) and motivational enhancement therapy (MET). These trials aim to explore the therapeutic potential of psychedelics for various addictions, ranging from alcohol and tobacco to methamphetamine and gambling addiction.

The treatment of addiction leverages the transformative potential of psychedelic drugs when administered in a safe and controlled environment. Early clinical trials and observational studies have shown that psychedelic-assisted therapy sessions can result in notable reductions in substance use, cravings, and relapse rates. Traditional psychedelics may effectively address various addictions, indicating the potential of these substances to target a common underlying mechanism (Yaden).

A pilot study by Bogenschutz (2015) explored the effects of psychedelics on alcohol addiction, particularly with psilocybin. Participants underwent therapy sessions supplemented by psilocybin doses. The results were promising: a significant reduction in drinking days and heavy drinking episodes lasting up to 36 weeks after treatment. Heavy drinking days are defined as when participants consumed more than five drinks for males and more than four drinks for females. The standard drink is settled on 14g alcohol which roughly translates to 130 ml of a glass of red wine or 280 ml of beer. Psilocybin also slashed craving scores by half, offering the potential for long-term recovery. Similar results were suggested in a study of individuals who struggled with tobacco addiction (Johnson, 2014). Psilocybin alongside CBT reported an impressive 80% abstinence rate after six months, far surpassing conventional interventions which contrasts with the typical 35% abstinence rate observed with current therapeutic interventions (Cahill, 2014). 

However, these studies are not entirely met with the scientific rigor of randomized controlled studies. For example, open-label studies cannot establish causality. No significant differences were found between moderate and high doses of psilocybin, indicating gaps in understanding its mechanisms in addiction treatment. However, psilocybin-assisted therapy shows lasting impacts beyond the drug’s immediate effects, with participants reporting higher success in quitting smoking when their experiences were highly significant and spiritually meaningful. These findings suggest a potential role of spirituality and the emotion of awe in the effectiveness of psychedelic therapy. 

For a deeper exploration, a deep dive into the challenges and knowledge gaps in psychedelic research in addiction treatment and recovery will be taken in the second part of the blog. 

In sum, it seems that PAT demonstrates promising outcomes and could offer hope for individuals grappling with addiction. Despite these positive findings, it is important to note that there are still many mysteries in the topic of psychedelics and its potential for treating addiction. As the age-old proverb reverberates within the halls of academia, there is a need for future research so both the efficacy and safety of psychedelics for addiction can be determined.

 

Meet an Expert in the Field: Dr. Zafar

Dr. Zafar, with his extensive background in neuropsychopharmacology and clinical research, is at the forefront of exploring the therapeutic potential of psychedelics in addiction treatment. His work, conducted within the Centre for Psychedelic Research and Neuropsychopharmacology group, is characterized by a multidisciplinary approach that integrates cutting-edge neuroimaging techniques with clinical interventions.

Dr. Zafar’s involvement in psychedelic therapy for addiction extends beyond research. As a senior scientific officer at Drug Science, he contributes to shaping policy and disseminating evidence-based information on medical psychedelics. Through his consulting and advisory services, he is actively engaged in advancing the field of addiction psychiatry and psychopharmacology.

 

 

Are you intrigued by Dr. Zafar’s pioneering work in the realm of psychedelic therapy for addiction? Go to part 2 of this blog, where we delve into the insights gleaned from his past online event, shedding light on the dynamic relationship between addiction and psychedelics. Plus, it is possible to gain access to exclusive online events like the one with Dr. Zafar by becoming a member.

By Gwendolyn Drossaert

References

  1. American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders 4th edn. American Psychiatric Press: Washington, DC.
  2. Bogenschutz, M. P., Forcehimes, A. A., Pommy, J. A., Wilcox, C. E., Barbosa, P. C., & Strassman, R. J. (2015). Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. Journal of psychopharmacology, 29(3), 289-299.
  3. Cahill, K., Stevens, S., & Lancaster, T. (2014). Pharmacological treatments for smoking cessation. Jama, 311(2), 193-194.
  4. Chick, J., Anton, R., Checinski, K., Croop, R., Drummond, D. C., Farmer, R., … & Ritson, B. (2000). A multicentre, randomized, double-blind, placebo-controlled trial of naltrexone in the treatment of alcohol dependence or abuse. Alcohol and alcoholism, 35(6), 587-593.
  5. Everitt, B. J., & Robbins, T. W. (2016). Drug addiction: updating actions to habits to compulsions ten years on. Annual review of psychology, 67, 23-50.
  6. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature neuroscience, 8(11), 1481-1489.
  7. Gerra, G., Fantoma, A., & Zaimovic, A. (2006). Naltrexone and buprenorphine combination in the treatment of opioid dependence. Journal of psychopharmacology, 20(6), 806-814.
  8. Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature reviews neuroscience, 12(11), 652-669.
  9. Griffiths, R. R., Richards, W. A., Johnson, M. W., McCann, U. D., & Jesse, R. (2008). Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. Journal of psychopharmacology, 22(6), 621-632.
  10. Hayes, A., Herlinger, K., Paterson, L., & Lingford-Hughes, A. (2020). The neurobiology of substance use and addiction: evidence from neuroimaging and relevance to treatment. BJPsych Advances, 26(6), 367-378.
  11. Heilig, M., MacKillop, J., Martinez, D., Rehm, J., Leggio, L., & Vanderschuren, L. J. (2021). Addiction as a brain disease revised: why it still matters, and the need for consilience. Neuropsychopharmacology, 46(10), 1715-1723.
  12. Johnson, M. W., Garcia-Romeu, A., Cosimano, M. P., & Griffiths, R. R. (2014). Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction. Journal of psychopharmacology, 28(11), 983-992.
  13. Johnson, M. W., Garcia-Romeu, A., & Griffiths, R. R. (2017). Long-term follow-up of psilocybin-facilitated smoking cessation. The American journal of drug and alcohol abuse, 43(1), 55-60.
  14. Kang, M., Mackay, L., Christie, D., Callon, C., & Argento, E. (2022). Can psychedelic-assisted psychotherapy play a role in enhancing motivation to change in addiction treatment settings?. Journal of Psychedelic Studies.
  15. Koob, G. F., & Le Moal, M. (2008). Addiction and the brain antireward system. Annu. Rev. Psychol., 59, 29-53.
  16. Koob, G. F., & Le Moal, M. (2005). Plasticity of reward neurocircuitry and the’dark side’of drug addiction. Nature neuroscience, 8(11), 1442-1444.
  17. Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1), 217-238.
  18. LADIS Tussenrapportage Kerncijfers Verslavingszorg 2016-2021, IVZ (2023) see link: https://cdn.bluenotion.nl/209c705755afb5baca6501d22c0ddc6e05c586540b8868fe813b7a1b3cb76695.pdf 
  19. Peters, J., & Olson, D. E. (2021). Engineering safer psychedelics for treating addiction. Neuroscience Insights, 16, 26331055211033847.
  20. Ritchie, H., Arriagada, P., & Roser, M. (2022). Opioids, cocaine, cannabis and other illicit drugs. Our World in Data.
  21. World Drug Report 2022: https://www.unodc.org/unodc/data-and-analysis/world-drug-report-2022.html 
  22. Yaden, D. B., Berghella, A. P., Regier, P. S., Garcia-Romeu, A., Johnson, M. W., & Hendricks, P. S. (2021). Classic psychedelics in the treatment of substance use disorder: potential synergies with twelve-step programs. International Journal of Drug Policy, 98, 103380.
  23. Zafar, R., Siegel, M., Harding, R., Barba, T., Agnorelli, C., Suseelan, S., … & Erritzoe, D. (2023). Psychedelic therapy in the treatment of addiction: the past, present and future. Frontiers in Psychiatry, 14, 1183740.

interested in becoming a trained psychedelic-assisted therapist?

Q&A with Rachel Harris: Wisdom from the Psychedelic Underground - Online Event - Oct 16th