OPEN Foundation

Day: 1 February 2017

Effect of a Hallucinogenic Serotonin 5-HT2A Receptor Agonist on Visually-Guided, Hippocampal-Dependent Spatial Cognition in C57BL/6J Mice

Abstract

By acting on serotonin 5-HT2A receptors (5-HT2ARs), serotonergic psychedelic drugs induce perceptual and visual hallucinations by increasing neuronal excitability and altering visual-evoked neuronal responses. The present study was designed to examine whether the perceptual alterations induced by a serotonergic psychedelic drug would affect the integrity of hippocampal-dependent, visually guided spatial cognition. phenylalkylamine hallucinogen TCB-2 is a selective agonist of 5-HT2ARs. Mice received TCB-2 (1.0 mg kg−1, i.p.), and spatial behaviors and hippocampal electrophysiological responses were measured with water maze tasks and in vivosingle-unit recording, respectively. TCB-2 did not affect visual cue approach behavior in the visible platform water maze, but increased the latency of trained mice to initiate goal-directed swimming during a probe test in the hidden platform Morris water maze, which could be prevented by 5-HT2AR antagonist MDL 11,939. Interestingly, TCB-2 did not affect the efficiency of the swim path or the proper use of distal visual cues during the probe test. Hippocampal place cell activity is considered to represent spatial and context-specific episodic memory. Systemic TCB-2 did not affect previously established place fields of CA1 neurons in mice exploring a familiar environment, or the remapping of place cells when the mice explored a novel environment. However, TCB-2 impaired the long-term stability of place fields for the novel environment initially encoded under the influence of TCB-2, which could be prevented by 5-HT2AR antagonist MDL 11,939. Our data indicate that hallucinogenic 5-HT2AR agonist delays the initiation of spatial search behavior, but does not impair the use of visual cues to guide goal-directed spatial behavior. Moreover, activation of 5-HT2ARs does not impair the coding and retrieval of spatial information, but impairs the long-term stability of new formed place fields of CA1 neurons.

Zhang, G., Cinalli, D., & Stackman, R. W. (2017). Effect of a hallucinogenic serotonin 5‐HT2A receptor agonist on visually guided, hippocampal‐dependent spatial cognition in C57BL/6J mice. Hippocampus. 10.1002/hipo.22712
Link to full text

Ketamine Therapy for Treatment-resistant Depression in a Patient with Multiple Sclerosis: A Case Report

Abstract

Objective: Depression is a common condition among patients with multiple sclerosis and often becomes resistant to oral antidepressants. We report a patient with multiple sclerosis who developed severe treatment-resistant depression and who was successfully treated with intravenous ketamine over the period of two years.
Methods: Ketamine treatment protocol included an initial series of six treatments administered every other day, followed by a maintenance schedule. Ketamine was administered intravenously at 0.5mg/kg of ideal body weight over 40 minutes. Depression symptoms were measured using Beck Depression Index.
Results: The patient’s Beck Depression Index score prior to initiating ketamine treatment was 38, corresponding to severe depression. Response to treatment, defined as 50-percent reduction in Beck Depression Index score, was observed after five treatments. For this patient, the maintenance schedule ranged from a weekly treatment to one treatment every three weeks. During the two-year observation period, this patient was able to maintain a stable non-depressed mood and had no worsening of her MS symptoms.
Conclusion: Ketamine may be an alternative treatment for resistant depression and may have a special use in patients with multiple sclerosis.
Messer, M. M., & Haller, I. V. (2017). Ketamine Therapy for Treatment-resistant Depression in a Patient with Multiple Sclerosis: A Case Report. Innovations in clinical neuroscience14(1-2), 56.
Link to full text

Ketamine decreases sensitivity of male rats to misleading negative feedback in a probabilistic reversal-learning task

Abstract

RATIONALE: Depression is characterized by an excessive attribution of value to negative feedback. This imbalance in feedback sensitivity can be measured using the probabilistic reversal-learning (PRL) task. This task was initially designed for clinical research, but introduction of its rodent version provides a new and much needed translational paradigm to evaluate potential novel antidepressants.

OBJECTIVES: In the present study, we aimed at evaluating the effects of a compound showing clear antidepressant properties-ketamine (KET)-on the sensitivity of rats to positive and negative feedback in the PRL paradigm.

METHODS: We trained healthy rats in an operant version of the PRL task. For successful completion of the task, subjects had to learn to ignore infrequent and misleading feedback, arising from the probabilistic (80:20) nature of the discrimination. Subsequently, we evaluated the effect of KET (5, 10, and 20 mg/kg) on feedback sensitivity 1, 24, and 48 h after administration.

RESULTS: We report that acute administration of the highest dose of KET (20 mg/kg) rapidly and persistently decreases the proportion of lose-shift responses made by rats after receiving negative feedback.

CONCLUSION: Present results suggest that KET decreases negative feedback sensitivity and that changes in this basic neurocognitive function might be one of the factors responsible for its antidepressant action.

Rychlik, M., Bollen, E., & Rygula, R. (2016). Ketamine decreases sensitivity of male rats to misleading negative feedback in a probabilistic reversal-learning task. Psychopharmacology, 1-8. 10.1007/s00213-016-4497-1
Link to full text

30 April - Q&A with Rick Strassman

X