OPEN Foundation

P. Fletcher

Exploring the impact of ketamine on the experience of illusory body ownership

Abstract

Background: Our sense of body ownership is profound and familiar, yet it may be misleading. In the rubber-hand illusion, synchronous tactile and visual stimulation lead to the experience that a rubber hand is actually one’s own. This illusion is emer in schizophrenia. Given the evidence that ketamine, a noncompetitive N-methyl-D-aspartate antagonist reproduces symptoms of schizophrenia, we sought to determine whether the rubber-hand illusion is augmented by ketamine.

Methods: We studied 15 healthy volunteers in a within-subjects placebo-controlled study. All volunteers carried out two versions of the rubber-hand task, each under both placebo and ketamine infusions. In one task, they saw a rubber hand being stroked in synchrony with tactile stimulation of their real, hidden hand. In the other, stroking of the real and rubber hands was asynchronous. We recorded subjective changes in sense of ownership, as well as participants’ ability to localize their hidden hand.

Results: Ketamine was associated with significant increases in subjective measures of the illusion and in hand mislocalization. Although asynchronous visuotactile stimulation attenuates the strength of the illusion during both placebo and ketamine, there remained a significant illusory effect during asynchronous visuotactile stimulation under ketamine compared with placebo. The strength of the illusion during asynchronous visuotactile stimulation correlated with other subjective effects of the drug.

Conclusions: Ketamine mimics the perturbed sense of body ownership seen in schizophrenia, suggesting that it produces a comparable alteration in integration of information across sensory domains and in the subjective and behavioral consequences of such integration.

Morgan, H. L., Turner, D. C., Corlett, P. R., Absalom, A. R., Adapa, R., Arana, F. S., … Fletcher, P. C. (2011). Exploring the impact of ketamine on the experience of illusory body ownership. Biological Psychiatry, 69(1), 35-41. http://dx.doi.org/10.1016/j.biopsych.2010.07.032
Link to full text

Glutamatergic Model Psychoses: Prediction Error, Learning, and Inference

Abstract

Modulating glutamatergic neurotransmission induces alterations in conscious experience that mimic the symptoms of early psychotic illness. We review studies that use intravenous administration of ketamine, focusing on interindividual variability in the profundity of the ketamine experience. We will consider this individual variability within a hypothetical model of brain and cognitive function centered upon learning and inference. Within this model, the brains, neural systems, and even single neurons specify expectations about their inputs and responding to violations of those expectations with new learning that renders future inputs more predictable. We argue that ketamine temporarily deranges this ability by perturbing both the ways in which prior expectations are specified and the ways in which expectancy violations are signaled. We suggest that the former effect is predominantly mediated by NMDA blockade and the latter by augmented and inappropriate feedforward glutamatergic signaling. We suggest that the observed interindividual variability emerges from individual differences in neural circuits that normally underpin the learning and inference processes described. The exact source for that variability is uncertain, although it is likely to arise not only from genetic variation but also from subjects’ previous experiences and prior learning. Furthermore, we argue that chronic, unlike acute, NMDA blockade alters the specification of expectancies more profoundly and permanently. Scrutinizing individual differences in the effects of acute and chronic ketamine administration in the context of the Bayesian brain model may generate new insights about the symptoms of psychosis; their underlying cognitive processes and neurocircuitry.

Corlett, P. R., Honey, G. D., Krystal, J. H., & Fletcher, P. C. (2011). Glutamatergic Model Psychoses: Prediction Error, Learning, and Inference. Neuropsychopharmacology Reviews, 36, 294–315. http://dx.doi.org/10.1038/npp.2010.163
Link to full text

interested in becoming a trained psychedelic-assisted therapist?

Management of Psychedelic-Related Complications - Online Event - Nov 20th