OPEN Foundation

Receptor binding profile suggests multiple mechanisms of action are responsible for ibogaine's putative anti-addictive activity

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email

Abstract

The indole alkaloid ibogaine (NIH 10567, Endabuse) is currently being examined for its potential utility in the treatment of cocaine and opioid addiction. However, a clearly defined molecular mechanism of action for ibogaine’s putative anti-addictive properties has not been delineated. Radioligand binding assays targeting over 50 distinct neurotransmitter receptors, ion channels, and select second messenger systems were employed to establish a broad in vitro pharmacological profile for ibogaine. These studies revealed that ibogaine interacted with a wide variety of receptors at concentrations of 1-100 microM. These included the mu, delta, kappa, opiate, 5HT2, 5HT3, and muscarinic1 and 2 receptors, and the dopamine, norepinephrine, and serotonin uptake sites. In addition, ibogaine interacted with N-methyl-D-aspartic acid (NMDA) associated ion and sodium ion channels as determined by the inhibition of [fusion_builder_container hundred_percent=”yes” overflow=”visible”][fusion_builder_row][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”][3H]MK-801 and [3H]bactrachotoxin A 20-alpha-benzoate binding (BTX-B), respectively. This broad spectrum of activity may in part be responsible for ibogaine’s putative anti-addictive activity.

Sweetnam, P. M., Lancaster, J., Snowman, A., Collins, J. L., Perschke, S., Bauer, C., & Ferkany, J. (1995). Receptor binding profile suggests multiple mechanisms of action are responsible for ibogaine’s putative anti-addictive activity. Psychopharmacology, 118(4), 369-376.
Link to full text

[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

OPEN Foundation

INTERESTED IN PSYCHEDELIC RESEARCH AND THERAPIES?

Subscribe to the OPEN Foundation’s newsletter to stay in the loop, hear about our events, and become a part of a community dedicated to advancing psychedelics.

By clicking subscribe, I confirm to receive emails from the OPEN Foundation and agree with its privacy policy.