OPEN Foundation

Mechanisms of antiaddictive actions of ibogaine

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email


Ibogaine, an alkaloid extracted from Tabemanthe iboga, is being studied as a potential long-acting treatment for oploid and stimulant abuse as well as for alcoholism and smoking. Studies in this laboratory have used animal models to characterize ibogaine’s interactions with drugs of abuse, and to investigate the mechanisms responsible. Ibogaine, as well as its metabolite, noribogaine, can decrease both morphine and cocaine self-administration for several days in some rats; shorter-lasting effects appear to occur on ethanol and nicotine intake. Acutely, both ibogaine and noribogaine decrease extracellular levels of dopamine in the nucleus accumbens of rat brain. Ibogaine pretreatment (19 hours beforehand) blocks morphine-induced dopamine release and morphine-induced locomotor hyperactivity while, in contrast, it enhances similar effects of stimulants (cocaine and amphetamine). Ibogaine pretreatment also blocks nicotine-induced dopamine release. Both ibogaine and noribogaine bind to kappa opioid and N-methyl-D-aspartate (NMDA) receptors and to serotonin uptake sites; ibogaine also binds to sigma-2 and nicotinic receptors. The relative contributions of these actions are being assessed. Our ongoing studies in rats suggest that kappa agonist and NMDA antagonist actions contribute to ibogaine’s effects on opioid and stimulant self-administration, while the serotonergic actions may be more important for ibogaine-induced decreases in alcohol intake. A nicotinic antagonist action may mediate ibogaine-induced reduction of nicotine preferences in rats. A sigma-2 action of ibogaine appears to mediate its neurotoxicity. Some effects of ibogaine (e.g., on morphine and cocaine self-administration, morphine-induced hyperactivity, cocaine-induced increases in nucleus accumbens dopamine) are mimicked by kappa agonist (U50,488) and/or a NMDA antagonist (MK-801). Moreover, a combination of a kappa antagonist and a NMDA agonist will partially reverse several of ibogaine’s effects. Ibogaine’s long-term effects may be mediated by slow release from fat tissue (where ibogaine is sequestered) and conversion to noribogaine. Different receptors, or combinations of receptors, may mediate interactions of ibogaine with different drugs of abuse.

Glick, S. D., & Maisonneuve, I. S. (1998). Mechanisms of antiaddictive actions of ibogaine. Annals of the New York Academy of Sciences, 844, 214-226.
Link to full text

OPEN Foundation

Join ICPR 2022 Online!

ICPR features world-leading experts from many academic disciplines, including psychiatry, psychology, neuroscience, anthropology, ethnobotany, and philosophy who come together to give a scientific conference for academics, therapists, researchers, clinicians, policymakers, and members of the public. Get your ICPR 2022 livestream ticket today and use the code OPENLIVE30 at checkout for a €30 discount.

Learn More


Subscribe to our new OPEN-Minded newsletter to stay in the loop, hear about our events, and become a part of a community dedicated to advancing psychedelics.

By clicking subscribe, I confirm to receive emails from the OPEN Foundation and agree with its privacy policy.