OPEN Foundation

Ex vivo effects of ibogaine on the activity of antioxidative enzymes in human erythrocytes

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email

Abstract

Ethnopharmacological relevance

Ibogaine is a naturally occurring alkaloid with psychotropic and metabotropic effects, derived from the bark of the root of the West African Tabernanthe iboga plant. The tribes of Kongo basin have been using iboga as a stimulant, for medicinal purposes, and in rite of passage ceremonies, for centuries. Besides, it has been found that this drug has anti-addictive effects.

Aim of the study

Previous studies have demonstrated that ibogaine changed the quantity of ATP and energy related enzymes as well as the activity of antioxidant enzymes in cells thus altering redox equilibrium in a time manner. In this work, the mechanism of its action was further studied by measuring the effects of ibogaine in human erythrocytes in vitro on ATP liberation, membrane fluidity and antioxidant enzymes activity.

Materials and methods

Heparinized human blood samples were incubated with ibogaine (10 and 20 μM) at 37°C for 1 h. Blood plasma was separated by centrifugation and the levels of ATP and uric acid were measured 10 min after the addition of ibogaine using standard kits. The activity of copper–zinc superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were measured in erythrocytes after incubation period. The stability of SOD1 activity was further tested through in vitro incubation with H2O2 and scanning of its electrophoretic profiles. Membrane fluidity was determined using an electron paramagnetic resonance spin-labelling method.

Results

Results showed that ibogaine treatment of erythrocytes in vitro increased ATP concentration in the blood plasma without changes in neither erythrocytes membrane fluidity nor uric acid concentration. Ibogaine also increased SOD1 activity in erythrocytes at both doses applied here. Treatment with 20 μM also elevated GR activity after in vitro incubation at 37 °C. Electrophoretic profiles revealed that incubation with ibogaine mitigates H2O2 mediated suppression of SOD1 activity.

Conclusion

Some of the effects of ibogaine seem to be mediated through its influence on energy metabolism, redox active processes and the effects of discrete fluctuations of individual reactive oxygen species on different levels of enzyme activities. Overall, ibogaine acts as a pro-antioxidant by increasing activity of antioxidative enzymes and as an adaptagene in oxidative distress.

Nikolić-Kokić, A., Oreščanin-Dušić, Z., Spasojević, I., Slavić, M., Mijušković, A., Paškulin, R., … & Blagojević, D. P. (2015). Ex vivo effects of ibogaine on the activity of antioxidative enzymes in human erythrocytes. Journal of ethnopharmacology, 164, 64-70. http://dx.doi.org/10.1016/j.jep.2015.01.037
Link to full text

OPEN Foundation

Join ICPR 2022 Online!

ICPR features world-leading experts from many academic disciplines, including psychiatry, psychology, neuroscience, anthropology, ethnobotany, and philosophy who come together to give a scientific conference for academics, therapists, researchers, clinicians, policymakers, and members of the public. Get your ICPR 2022 livestream ticket today and use the code OPENLIVE30 at checkout for a €30 discount.

Learn More

INTERESTED IN PSYCHEDELIC RESEARCH AND THERAPIES?

Subscribe to our new OPEN-Minded newsletter to stay in the loop, hear about our events, and become a part of a community dedicated to advancing psychedelics.

By clicking subscribe, I confirm to receive emails from the OPEN Foundation and agree with its privacy policy.

30 April - Q&A with Rick Strassman

X