OPEN Foundation

Evaluation of the Cytotoxicity of Ayahuasca Beverages

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email

Abstract

Ayahuasca is a beverage consumed at shamanic ceremonies and currently has gained popularity on recreational scenarios. It contains beta-carboline alkaloids and N,N-dimethyltryptamine, which possesses hallucinogenic effects. Only a few studies have elicited the psychoactive effects and the dose of such compounds on neurological dopaminergic cells or animals. In this work, we aimed to study the cytotoxic effects of these compounds present in ayahuasca beverages and on five different teas (Banisteriopsis caapi, Psychotria viridis, Peganum harmala, Mimosa tenuiflora and Dc Ab (commercial name)) preparations on dopaminergic immortalized cell lines. Moreover, a characterization of the derivative alkaloids was also performed. All the extracts were characterized by chromatographic systems and the effect of those compounds in cell viability and total protein levels were analyzed in N27 dopaminergic neurons cell line. This is the first article where cytotoxicity of ayahuasca tea is studied on neurological dopaminergic cells. Overall, results showed that both cell viability and protein contents decreased when cells were exposed to the individual compounds, as well as to the teas and to the two mixtures based on the traditional ayahuasca beverages.

Simão, A. Y., Gonçalves, J., Gradillas, A., García, A., Restolho, J., Fernández, N., Rodilla, J. M., Barroso, M., Duarte, A. P., Cristóvão, A. C., & Gallardo, E. (2020). Evaluation of the Cytotoxicity of Ayahuasca Beverages. Molecules (Basel, Switzerland), 25(23), 5594. https://doi.org/10.3390/molecules25235594

Link to full text

OPEN Foundation

INTERESTED IN PSYCHEDELIC RESEARCH AND THERAPIES?

Subscribe to the OPEN Foundation’s newsletter to stay in the loop, hear about our events, and become a part of a community dedicated to advancing psychedelics.

By clicking subscribe, I confirm to receive emails from the OPEN Foundation and agree with its privacy policy.