OPEN Foundation

Search
Close this search box.

Drug models of schizophrenia

Share This Post

Abstract

Schizophrenia is a complex mental health disorder with positive, negative and cognitive symptom domains. Approximately one third of patients are resistant to currently available medication. New therapeutic targets and a better understanding of the basic biological processes that drive pathogenesis are needed in order to develop therapies that will improve quality of life for these patients. Several drugs that act on neurotransmitter systems in the brain have been suggested to model aspects of schizophrenia in animals and in man. In this paper, we selectively review findings from dopaminergic, glutamatergic, serotonergic, cannabinoid, GABA, cholinergic and kappa opioid pharmacological drug models to evaluate their similarity to schizophrenia. Understanding the interactions between these different neurotransmitter systems and their relationship with symptoms will be an important step towards building a coherent hypothesis for the pathogenesis of schizophrenia.

Steeds, H., Carhart-Harris, R. L., & Stone, J. M. (2014). Drug models of schizophrenia. Therapeutic Advances in Psychopharmacology. https://dx.doi.org/10.1177/2045125314557797
Link to full text

OPEN Foundation

Join ICPR 2022 Online!

ICPR features world-leading experts from many academic disciplines, including psychiatry, psychology, neuroscience, anthropology, ethnobotany, and philosophy who come together to give a scientific conference for academics, therapists, researchers, clinicians, policymakers, and members of the public. Get your ICPR 2022 livestream ticket today and use the code OPENLIVE30 at checkout for a €30 discount.

Learn More

INTERESTED IN PSYCHEDELIC RESEARCH AND THERAPIES?

Subscribe to our new OPEN-Minded newsletter to stay in the loop, hear about our events, and become a part of a community dedicated to advancing psychedelics.

By clicking subscribe, I confirm to receive emails from the OPEN Foundation and agree with its privacy policy.