OPEN Foundation

Detailed pharmacological evaluation of methoxetamine (MXE), a novel psychoactive ketamine analogue—Behavioural, pharmacokinetic and metabolic studies in the Wistar rat

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email

Abstract

Methoxetamine (MXE) is a novel psychoactive compound (NPS) that emerged in 2010 as a substitute for the dissociative anaesthetic ketamine. MXE has a reputation of carrying a lower risk of harm than ketamine, however a number of deaths have been reported. Currently very little is known about the psychopharmacological effects of this compound or its toxicity; therefore we tested, in Wistar rats, the effects of MXE in a series of behavioural tasks, measured its pharmacokinetics and urinary metabolites.

Locomotor activity and its spatial characteristics (in the open field) and sensorimotor gating (prepulse inhibition; PPI) were evaluated after 5, 10 and 40 mg/kg subcutaneous (sc.) MXE. Pharmacokinetics and brain: serum ratios were evaluated after 10 mg/kg sc. MXE so that peak drug concentration data could be used to complement interpretation of maximal behavioural effects. Finally, quantification of metabolites in rat urine collected over 24 h was performed after single bolus of MXE 40 mg/kg sc.

5 and 10 mg/kg MXE induced significant locomotor stimulation, in addition it increased thigmotaxis and decreased time spent in the centre of the open field (indicative of anxiogenesis). By contrast, 40 mg/kg reduced locomotion and increased time spent in the centre of the arena, suggesting sedation/anaesthesia or stereotypy. The duration of effects was present for at least 60–90 min, although for 5 mg/kg, locomotion diminished after 60 min. MXE decreased baseline acoustic startle response (ASR) and disrupted PPI, irrespective of testing-onset. MXE (all doses) reduced habituation but only at 60 min. Maximal brain levels of MXE were observed 30 min after administration, remained high at 60 min and progressively declined to around zero after six hours. MXE accumulated in the brain; the brain: serum ratio was between 2.06 and 2.93 throughout the whole observation. The most abundant urinary metabolite was O-desmethylmethoxetamine followed by normethoxetamine.

To conclude, MXE acts behaviourally as a typical dissociative anaesthetic with stimulant and anxiogenic effects at lower doses, sedative/anaesthetic effects at higher doses, and as a disruptor of sensorimotor gating. Its duration of action exceeds that of ketamine which is consistent with reports from MXE users. The accumulation of the drug in brain tissue might reflect MXE’s stronger potency compared to ketamine and indicate increased toxicity.

Horsley, R. R., Lhotkova, E., Hajkova, K., Jurasek, B., Kuchar, M., & Palenicek, T. (2016). Detailed pharmacological evaluation of methoxetamine (MXE), a novel psychoactive ketamine analogue—Behavioural, pharmacokinetic and metabolic studies in the Wistar rat. Brain Research Bulletin. http://dx.doi.org/10.1016/j.brainresbull.2016.05.002
Link to full text

OPEN Foundation

Join ICPR 2022 Online!

ICPR features world-leading experts from many academic disciplines, including psychiatry, psychology, neuroscience, anthropology, ethnobotany, and philosophy who come together to give a scientific conference for academics, therapists, researchers, clinicians, policymakers, and members of the public. Get your ICPR 2022 livestream ticket today and use the code OPENLIVE30 at checkout for a €30 discount.

Learn More

INTERESTED IN PSYCHEDELIC RESEARCH AND THERAPIES?

Subscribe to our new OPEN-Minded newsletter to stay in the loop, hear about our events, and become a part of a community dedicated to advancing psychedelics.

By clicking subscribe, I confirm to receive emails from the OPEN Foundation and agree with its privacy policy.

30 April - Q&A with Rick Strassman

X