OPEN Foundation

Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: A theoretical study

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email

Abstract

The effective psychoactive properties of N,N-dimethyltryptamine (DMT) known as the near-death molecule have encouraged the imagination of many research disciplines for several decades. Although there is no theoretical study, a number of paper composed by experimental techniques have been reported for DMT molecule. In this study, the molecular modeling of DMT was carried out using B3LYP and HSEh1PBE levels of density functional theory (DFT). Our calculations showed that the energy gap between HOMO and LUMO is low, demonstrating that DMT is a biologically active molecule. Large hyperconjugation interaction energies imply that molecular charge transfer occurs in DMT. Moreover, NLO analysis indicates that DMT can be used an effective NLO material.

Öner, N., Tamer, Ö., Avcı, D., & Atalay, Y. (2014). Conformational, spectroscopic and nonlinear optical properties of biologically active N, N-dimethyltryptamine molecule: A theoretical study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 542-549. https://dx.doi.org/10.1016/j.saa.2014.06.037

Link to full text

OPEN Foundation

Join ICPR 2022 Online!

ICPR features world-leading experts from many academic disciplines, including psychiatry, psychology, neuroscience, anthropology, ethnobotany, and philosophy who come together to give a scientific conference for academics, therapists, researchers, clinicians, policymakers, and members of the public. Get your ICPR 2022 livestream ticket today and use the code OPENLIVE30 at checkout for a €30 discount.

Learn More

INTERESTED IN PSYCHEDELIC RESEARCH AND THERAPIES?

Subscribe to our new OPEN-Minded newsletter to stay in the loop, hear about our events, and become a part of a community dedicated to advancing psychedelics.

By clicking subscribe, I confirm to receive emails from the OPEN Foundation and agree with its privacy policy.